7 resultados para Platihelmints


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudi realitzat a partir d’una estada a la Institut J.W. Jenkinson Laboratory for Evolution and Development of the University of Oxford, Regne Unit, entre 2010 i 2012. He estat membre del laboratori del Professor Peter W.H. Holland com a becari post-doctoral Beatriu de Pinós des de setembre de 2010 al setembre de 2012. El nostre projecte de recerca se centra en l'anàlisi genòmic comparatiu del Regne Animal, tot explorant el contingut dels genomes a través de totes les branques de l'arbre dels animals. Totes les referències a les meves publicacions durant aquest post-doc es poden trobar a http://about.me/jordi_paps. Crec que el nombre i la qualitat dels resultats del meu post-doc, un total de 8 publicacions incloent dos articles a la prestigiosa revista Nature, són prova de l'èxit d'aquest post-doc. Prof Peter W. H. Holland (Departament de Zoologia de la Universitat d'Oxford) i jo som coautors de tres articles de genòmica comparativa, resultats directes d'aquest projecte: 1) comparació de families gèniques entre vertebrats invertebrats (Briefings in Functional Genomics), 2) el genoma de l'ostra (publicat a la revista Nature), i 3) els genomes de 6 platihelmints paràsits (acceptat també a Nature). A més, tenim altres 2 treballs en preparació. Un d'ells analitza l'evolució, expressió i funció dels gens Hox al a la tènia Hymenolepis. El perfil fi d'aquests gens clau del desenvolupament esclareix els canvis d'estil de vida dels organismes. A més, durant aquest últim post-doc he participat en diverses col•laboracions, incloent anàlisi de gens d'envelliment a cucs plans, un estudi sobre la filogènia del grup Gastrotricha, una revisió de l'evolució phylum Platyhelminthes, així com un capítol d'un llibre sobre l'evolució dels animals bilaterals. Finalment, gràcies a la beca Beatriu de Pinós, el Prof. Peter W.H. Holland m'ha convidat a formar part del seu equip com un investigador post-doctoral en el seu projecte ERC Advance actual sobre duplicacions genòmiques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged. Results: A total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses. Conclusions: S. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Dugesia sicula is the only species of its genus not presenting an endemic or restricted distribution within the Mediterranean area. It mostly comprises fissiparous populations (asexual reproduction by body division and regeneration), most likely sexually sterile, and characterized by an extremely low genetic diversity interpreted as the consequence of a recent anthropic expansion. However, its fissiparous reproduction can result in an apparent lack of diversity within the species, since genetic variation within individuals can be as large as between them because most individuals within a population are clones. We have estimated haplotype and nucleotide diversity of cytochrome oxidase I within and among individuals along the species distribution of a broad sample of D. sicula, including asexual and the two only sexual populations known today; and predicted its potential distribution based on climatic variables. Our aim was to determine the centre of colonisation origin, whether the populations are recent, and whether the species is expanding. Results The species presents 3 most frequent haplotypes, differing in a maximum of 11 base pairs. As expected from their fissiparous mode of reproduction, in half of all the analysed localities many individuals have multiple heteroplasmic haplotypes. The distribution of haplotypes is not geographically structured; however, the distribution of haplotypes and heteroplasmic populations shows higher diversity in the central Mediterranean region. The potential distribution predicted by climatic variables based modelling shows a preference for coastal areas and fits well with the observed data. Conclusions The distribution and frequency of the most frequent haplotypes and the presence of heteroplasmic individuals allow us to gain an understanding of the recent history of the species, together with previous knowledge on its phylogenetic relationships and age: The species most probably originated in Africa and dispersed through the central Mediterranean. After one or multiple populations became triploid and fissiparous, the species colonized the Mediterranean basin, likely both by its own means and helped by human activities. Its present distribution practically fulfils its potential distribution as modelled with climatic variables. Its prevalence in coastal regions with higher water temperatures predicts a likely future expansion to northern and more interior areas following the increase in temperatures due to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planarians are a group of free-living platyhelminths (triclads) best-known largely due to long-standing regeneration and pattern formation research. However, the group"s diversity and evolutionary history has been mostly overlooked. A few taxonomists have focused on certain groups, resulting in the description of many species and the establishment of higher-level groups within the Tricladida. However, the scarcity of morphological features precludes inference of phylogenetic relationships among these taxa. The incorporation of molecular markers to study their diversity and phylogenetic relationships has facilitated disentangling many conundrums related to planarians and even allowed their use as phylogeographic model organisms. Here, we present some case examples ranging from delimiting species in an integrative style, and barcoding them, to analysing their evolutionary history on a lower scale to infer processes affecting biodiversity origin, or on a higher scale to understand the genus level or even higher relationships. In many cases, these studies have allowed proposing better classifications and resulted in taxonomical changes. We also explain shortcomings resulting in a lack of resolution or power to apply the most up-to-date data analyses. Next-generation sequencing methodologies may help improve this situation and accelerate their use as model organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Models of the maintenance of sex predict that one reproductive strategy, sexual or parthenogenetic, should outcompete the other. Distribution patterns may reflect the outcome of this competition as well as the effect of chance and historical events. We review the distribution data of sexual and parthenogenetic biotypes of the planarian Schmidtea polychroa. Results: S. polychroa lives in allopatry or sympatry across Europe except for Central and North-Western Europe, where sexual individuals have never been reported. A phylogenetic relationship between 36 populations based on a 385 bp fragment of the mitochondrial cytochrome oxidase I gene revealed that haplotypes were often similar over large geographic distances. In North Italian lakes, however, diversity was extreme, with sequence differences of up to 5% within the same lake in both sexuals and parthenogens. Mixed populations showed "endemic" parthenogenetic lineages that presumably originated from coexisting sexuals, and distantly related ones that probably result from colonization by parthenogens independent from sexuals. Conclusions: Parthenogens originated repeatedly from sexuals, mainly in Italy, but the same may apply to other Mediterranean regions (Spain, Greece). The degree of divergence between populations suggests that S. polychroa survived the ice ages in separate ice-free areas in Central, Eastern and Southern Europe and re-colonised Europe after the retreat of the major glaciers. Combining these results with those based on nuclear markers, the data suggest that repeated hybridisation between sexuals and parthenogenetic lineages in mixed populations maintains high levels of genetic diversity in parthenogens. This can explain why parthenogens persist in populations that were originally sexual. Exclusive parthenogenesis in central and western populations suggests better colonisation capacity, possibly because of inbreeding costs as well

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoel flatworms are small marine worms traditionally considered to belong to the phylum Platyhelminthes. However, molecular phylogenetic analyses suggest that acoels are not members of Platyhelminthes, but are rather extant members of the earliest diverging Bilateria. This result has been called into question, under suspicions of a long branch attraction (LBA) artefact. Here we re-examine this problem through a phylogenomic approach using 68 different protein-coding genes from the acoel Convoluta pulchra and 51 metazoan species belonging to 15 different phyla. We employ a mixture model, named CAT, previously found to overcome LBA artefacts where classical models fail. Our results unequivocally show that acoels are not part of the classically defined Platyhelminthes, making the latter polyphyletic. Moreover, they indicate a deuterostome affinity for acoels, potentially as a sister group to all deuterostomes, to Xenoturbellida, to Ambulacraria, or even to chordates. However, the weak support found for most deuterostome nodes, together with the very fast evolutionary rate of the acoel Convoluta pulchra, call for more data from slowly evolving acoels (or from its sister-group, the Nemertodermatida) to solve this challenging phylogenetic problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids.