938 resultados para Plasmodium-chabaudi-adami
Resumo:
Plasmodium chabaudi adami causes a nonlethal infection in mice. We found that crisis, the time of rapidly dropping parasitemia, was abrogated by splenectomy, indicating the role of spleen in parasite killing. The factors that mediate spleen-dependent immunity are not known. An earlier study in Plasmodium berghei-infected rats showed an association between increased clearance of heat-treated erythrocytes and the onset of crisis [Wyler, D. J., Quinn, T. C. & Chen, L.-T. (1982) J. Clin. Invest. 67, 1400-1404]. To determine the potential effects of different vascular beds in parasite killing, we studied the distribution of parasitized erythrocytes and bacteria in the spleens of P. chabaudi adami-infected mice during precrisis (a period of rising parasitemia) and during crisis. After intravenous injection, bacteria were localized predominantly in the marginal zone. In contrast, parasitized erythrocytes were found in the red pulp. We also found that during precrisis, a time of no immunity, the uptake of radiolabeled infected erythrocytes by the spleen was increased, not decreased. These data imply that no change occurs in the flow of parasitized erythrocytes through the spleen during the transition to an immune state (crisis). Our observations suggest that immune effector mechanisms, not circulatory changes, account for spleen-dependent parasite killing during a P. chabaudi adami infection in mice.
Resumo:
The pivotal role of spleen CD4(+) T cells in the development of both malaria pathogenesis and protective immunity makes necessary a profound comprehension of the mechanisms involved in their activation and regulation during Plasmodium infection. Herein, we examined in detail the behaviour of non-conventional and conventional splenic CD4(+) T cells during P. chabaudi malaria. We took advantage of the fact that a great proportion of CD4(+) T cells generated in CD1d(-/-) mice are I-A(b)-restricted (conventional cells), while their counterparts in I-Ab(-/-) mice are restricted by CD1d and other class IB major histocompatibility complex (MHC) molecules (non-conventional cells). We found that conventional CD4(+) T cells are the main protagonists of the immune response to infection, which develops in two consecutive phases concomitant with acute and chronic parasitaemias. The early phase of the conventional CD4(+) T cell response is intense and short lasting, rapidly providing large amounts of proinflammatory cytokines and helping follicular and marginal zone B cells to secrete polyclonal immunoglobulin. Both TNF-alpha and IFN-gamma production depend mostly on conventional CD4(+) T cells. IFN-gamma is produced simultaneously by non-conventional and conventional CD4(+) T cells. The early phase of the response finishes after a week of infection, with the elimination of a large proportion of CD4(+) T cells, which then gives opportunity to the development of acquired immunity. Unexpectedly, the major contribution of CD1d-restricted CD4(+) T cells occurs at the beginning of the second phase of the response, but not earlier, helping both IFN-gamma and parasite-specific antibody production. We concluded that conventional CD4(+) T cells have a central role from the onset of P. chabaudi malaria, acting in parallel with non-conventional CD4(+) T cells as a link between innate and acquired immunity. This study contributes to the understanding of malaria immunology and opens a perspective for future studies designed to decipher the molecular mechanisms behind immune responses to Plasmodium infection.
Resumo:
The NK1.1 molecule participates in NK, NKT, and T-cell activation, contributing to IFN-gamma production and cytotoxicity. To characterize the early immune response to Plasmodium chabaudi AS, spleen NK1.1(+) and NK1.1(-) T cells were compared in acutely infected C57BL/6 mice. The first parasitemia peak in C57BL/6 mice correlated with increase in CD4(+)NK1.1(+)TCR-alpha beta(+), CD8(+)NK1.1(+)TCR-alpha beta(+), and CD4(+)NK1.1(-)TCR-alpha beta(+) cell numbers per spleen, where a higher increment was observed for NK1.1(+) T cells compared to NK1.1(-) T cells. According to the ability to recognize the CD1d-alpha-GalCer tetramer, CD4(+)NK1.1(+) cells in 7-day infected mice were not predominantly invariant NKT cells. At that time, nearly all NK1.1(+) T cells and around 30% of NK1.1(-) T cells showed an experienced/activated (CD44(HI)CD69(HI)CD122(HI)) cell phenotype, with high expression of Fas and PD-L1 correlating with their low proliferative capacity. Moreover, whereas IFN-gamma production by CD4(+)NK1.1(+) cells peaked at day 4 p.i., the IFN-gamma response of CD4(+)NK1.1(-) cells continued to increase at day 5 of infection. We also observed, at day 7 p.i., 2-fold higher percentages of perforin(+) cells in CD8(+)NK1.1(+) cells compared to CD8(+)NK1.1(-) cells. These results indicate that spleen NK1.1(+) and NK1.1(-) T cells respond to acute P. chabaudi malaria with different kinetics in terms of activation, proliferation, and IFN-gamma production.
Resumo:
This work aimed to study the T helper type 1/2 (Th1/Th2) cytokine profile in a co-infection murine model of Plasmodium chabaudi chabaudi and Leishmania infantum. Expression of interferon-gamma (IFN-g) and interleukin-4 (IL-4) was analyzed, in spleen and liver of C57BL/6 mice, by reverse transcriptase-polymerase chain reaction. High levels of IFN-g expression did not prevent the progression of Leishmania in co-infected mice and Leishmania infection did not interfere with the Th1/Th2 switch necessary for Plasmodium control. The presence of IL-4 at day 28 in co-infected mice, essential for Plasmodium elimination, was probably a key factor on the exacerbation of the Leishmania infection.
Resumo:
The spleen plays a crucial role in the development of immunity to malaria, but the role of pattern recognition receptors (PRRs) in splenic effector cells during malaria infection is poorly understood. In the present study, we analysed the expression of selected PRRs in splenic effector cells from BALB/c mice infected with the lethal and non-lethal Plasmodium yoelii strains 17XL and 17X, respectively, and the non-lethal Plasmodium chabaudi chabaudi AS strain. The results of these experiments showed fewer significant changes in the expression of PRRs in AS-infected mice than in 17X and 17XL-infected mice. Mannose receptor C type 2 (MRC2) expression increased with parasitemia, whereas Toll-like receptors and sialoadhesin (Sn) decreased in mice infected with P. chabaudi AS. In contrast, MRC type 1 (MRC1), MRC2 and EGF-like module containing mucin-like hormone receptor-like sequence 1 (F4/80) expression decreased with parasitemia in mice infected with 17X, whereas MRC1 an MRC2 increased and F4/80 decreased in mice infected with 17XL. Furthermore, macrophage receptor with collagenous structure and CD68 declined rapidly after initial parasitemia. SIGNR1 and Sn expression demonstrated minor variations in the spleens of mice infected with either strain. Notably, macrophage scavenger receptor (Msr1) and dendritic cell-associated C-type lectin 2 expression increased at both the transcript and protein levels in 17XL-infected mice with 50% parasitemia. Furthermore, the increased lethality of 17X infection in Msr1 -/- mice demonstrated a protective role for Msr1. Our results suggest a dual role for these receptors in parasite clearance and protection in 17X infection and lethality in 17XL infection.
Resumo:
Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37ºC with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 µM - 75%), staurosporine (1 µM - 58%), R03 (1 µM - 75%), and tyrphostins B44 (100 µM - 66%) and B46 (100 µM - 68%). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.
Resumo:
Background: Severe malarial anaemia is a major complication of malaria infection and is multifactorial resulting from loss of circulating red blood cells (RBCs) from parasite replication, as well as immune-mediated mechanisms. An understanding of the causes of severe malarial anaemia is necessary to develop and implement new therapeutic strategies to tackle this syndrome of malaria infection. Methods: Using analysis of variance, this work investigated whether parasite-destruction of RBCs always accounts for the severity of malarial anaemia during infections of the rodent malaria model Plasmodium chabaudi in mice of a BALB/c background. Differences in anaemia between two different clones of P. chabaudi were also examined. Results: Circulating parasite numbers were not correlated with the severity of anaemia in either BALB/c mice or under more severe conditions of anaemia in BALB/c RAG2 deficient mice (lacking T and B cells). Mice infected with P. chabaudi clone CB suffered more severe anaemia than mice infected with clone AS, but this was not correlated with the number of parasites in the circulation. Instead, the peak percentage of parasitized RBCs was higher in CB-infected animals than in AS-infected animals, and was correlated with the severity of anaemia, suggesting that the availability of uninfected RBCs was impaired in CB-infected animals. Conclusion: This work shows that parasite numbers are a more relevant measure of parasite levels in P. chabaudi infection than % parasitaemia, a measure that does not take anaemia into account. The lack of correlation between parasite numbers and the drop in circulating RBCs in this experimental model of malaria support a role for the host response in the impairment or destruction of uninfected RBC in P. chabaudi infections, and thus development of acute anaemia in this malaria model.
Resumo:
ES-62 is a phosphorylcholine-containing glycoprotein secreted by filarial nematodes. This molecule has been shown to reduce the severity of inflammation in collagen-induced arthritis (CIA) in mice, a model of rheumatoid arthritis, via down-regulation of anti-collagen type 1 immune responses. Malaria parasites induce a pro-inflammatory host immune response and many of the symptoms of malaria are immune system-mediated. Therefore we have asked whether the immunomodulatory properties of ES-62 can down-regulate the severity of malaria infection in BALB/c mice infected with Plasmodium chabaudi. We have found that ES-62 has no significant effect on the course of P. chabaudi parasitaemia, and does not significantly affect any of the measures of malaria-induced pathology taken throughout infection.
Resumo:
The mechanisms responsible for the generation and maintenance of immunological memory to Plasmodium are poorly understood and the reasons why protective immunity in humans is so difficult to achieve and rapidly lost remain a matter for debate. A possible explanation for the difficulty in building up an efficient immune response against this parasite is the massive T cell apoptosis resulting from exposure to high-dose parasite Ag. To determine the immunological mechanisms required for long-term protection against P. chabaudi malaria and the consequences of high and low acute phase parasite loads for acquisition of protective immunity, we performed a detailed analysis of T and B cell compartments over a period of 200 days following untreated and drug-treated infections in female C57BL/6 mice. By comparing several immunological parameters with the capacity to control a secondary parasite challenge, we concluded that loss of full protective immunity is not determined by acute phase parasite load nor by serum levels of specific IgG2a and IgG1. Abs, but appears to be a consequence of the progressive decline in memory T cell response to parasites, which occurs similarly in untreated and drug-treated mice with time after infection. Furthermore, by analyzing adoptive transfer experiments, we confirmed the major role of CD4(+) T cells for guaranteeing long-term full protection against P. chabaudi malaria. The Journal of Immunology, 2008, 181: 8344-8355.
Resumo:
Calcium (Ca2+) is a critical regulator of many aspects of the Plasmodium reproductive cycle. In particular, intra-erythrocyte Plasmodium parasites respond to circulating levels of the melatonin in a process mediated partly by intracellular Ca2+. Melatonin promotes the development and synchronicity of parasites, thereby enhancing their spread and worsening the clinical implications. The signalling mechanisms underlying the effects of melatonin are not fully established, although both Ca2+ and cyclic AMP (cAMP) have been implicated. Furthermore, it is not clear whether different strains of Plasmodium use the same, or divergent, signals to control their development. The aim of this study was to explore the signalling mechanisms engaged by melatonin in P. chabaudi, a virulent rodent parasite. Using parasites at the throphozoite stage acutely isolated from mice erythrocytes, we demonstrate that melatonin triggers cAMP production and protein kinase A (PKA) activation. Interestingly, the stimulation of cAMP/PKA signalling by melatonin was dependent on elevation of Ca2+ within the parasite, because buffering Ca2+ changes using the chelator BAPTA prevented cAMP production in response to melatonin. Incubation with melatonin evoked robust Ca2+ signals within the parasite, as did the application of a membrane-permeant analogue of cAMP. Our data suggest that P. chabaudi engages both Ca2+ and cAMP signalling systems when stimulated by melatonin. Furthermore, there is positive feedback between these messengers, because Ca2+ evokes cAMP elevation and vice versa. Melatonin more than doubled the observed extent of parasitemia, and the increase in cAMP concentration and PKA activation was essential for this effect. These data support the possibility to use melatonin antagonists or derivates in therapeutic approach.
Resumo:
The spleen plays a crucial role in the development of immunity to malaria, but the role of pattern recognition receptors (PRRs) in splenic effector cells during malaria infection is poorly understood. In the present study, we analysed the expression of selected PRRs in splenic effector cells from BALB/c mice infected with the lethal and non-lethal Plasmodium yoelii strains 17XL and 17X, respectively, and the non-lethal Plasmodium chabaudi chabaudi AS strain. The results of these experiments showed fewer significant changes in the expression of PRRs in AS-infected mice than in 17X and 17XL-infected mice. Mannose receptor C type 2 (MRC2) expression increased with parasitemia, whereas Toll-like receptors and sialoadhesin (Sn) decreased in mice infected with P. chabaudi AS. In contrast, MRC type 1 (MRC1), MRC2 and EGF-like module containing mucin-like hormone receptor-like sequence 1 (F4/80) expression decreased with parasitemia in mice infected with 17X, whereas MRC1 an MRC2 increased and F4/80 decreased in mice infected with 17XL. Furthermore, macrophage receptor with collagenous structure and CD68 declined rapidly after initial parasitemia. SIGNR1 and Sn expression demonstrated minor variations in the spleens of mice infected with either strain. Notably, macrophage scavenger receptor (Msr1) and dendritic cell-associated C-type lectin 2 expression increased at both the transcript and protein levels in 17XL-infected mice with 50% parasitemia. Furthermore, the increased lethality of 17X infection in Msr1 -/- mice demonstrated a protective role for Msr1. Our results suggest a dual role for these receptors in parasite clearance and protection in 17X infection and lethality in 17XL infection.
Resumo:
The mechanism by which protective immunity to Plasmodium is lost in the absence of continued exposure to this parasite has yet to be fully elucidated. It has been recently shown that IFN-γ produced during human and murine acute malaria primes the immune response to TLR agonists. In this study, we investigated whether IFN-γ-induced priming is important to maintain long-term protective immunity against Plasmodium chabaudi AS malaria. On day 60 postinfection, C57BL/6 mice still had chronic parasitemia and efficiently controlled homologous and heterologous (AJ strain) challenge. The spleens of chronic mice showed augmented numbers of effector/effector memory (TEM) CD4(+) cells, which is associated with increased levels of IFN-γ-induced priming (i.e., high expression of IFN-inducible genes and TLR hyperresponsiveness). After parasite elimination, IFN-γ-induced priming was no longer detected and protective immunity to heterologous challenge was mostly lost with >70% mortality. Spontaneously cured mice had high serum levels of parasite-specific IgG, but effector T/TEM cell numbers, parasite-driven CD4(+) T cell proliferation, and IFN-γ production were similar to noninfected controls. Remarkably, the priming of cured mice with low doses of IFN-γ rescued TLR hyperresponsiveness and the capacity to control heterologous challenge, increasing the TEM cell population and restoring the CD4(+) T cell responses to parasites. Contribution of TLR signaling to the CD4(+) T cell responses in chronic mice was supported by data obtained in mice lacking the MyD88 adaptor. These results indicate that IFN-γ-induced priming is required to maintain protective immunity against P. chabaudi and aid in establishing the molecular basis of strain-transcending immunity in human malaria.
Resumo:
It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (PciRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.
Resumo:
Inbred strains of C5731 and NIH nice infected with the A/S strain of Plasmodium chaubaudi usually developed high parasitaemias but infections were rarely fatal in immunocompetent mice and in most mice the parasites could be eradicated within 53 days or less. The immune response of C57B1 and NTH mice to infection with the A/S strain of P. chabaudi was studied. The principle method used in this study for investigating the immune response of the mice was to examine the immunity conferred on syngeneic mice, either X-irradiated or non-irradiated, by transferring to them lymphoid cells or serum from immune or semi-immune donors. The lymphoid cell populations examined were unfractionated spleen cells, nylon wool column enriched subpopulations of thymus-derived lymphocytes (T cells) and the so-called bursa-derived lymphocytes (B cells), bone marrow cells and phagocytic cells. In the course of these experiments observations were made on the effect of X-irradiation on the subsequent growth and multiplication of the parasite. In addition, an in vitro assay for antibody-dependent cell mediated cytotoxicity was used to investigate the activity of splenic K cells during malaria infection. K cells are lymphoid cells which may include lymphocytes of an undefined category, but possess receptors for the Fc portion of antibody on their surface and have the ability to non-specifically lyse target cells coated in antibodies. a) The adoptive transfer of immunity to P.chabaudi with immune spleen cells. Spleen cells from mice which had previously been infected with P.chabaudi were able to confer some immunity on syngeneic mice which had been irradiated with 600 or 800 rads. The protection was detected as a shortened patent parasitaemia in immune cell recipients compared to controls. The early experiments indicated the value of using irradiated recipients rather than non-irradiated recipients. In irradiated mice, a) smaller numbers of immune cells were required to promote detectable immunity than in non-irradiated mice, b) there was an amplification of the difference in the duration of primary parasitaemias in recipients of immune cells and normal cells compared to non-irradiated mice and c) as the irradiated host is immunodepressed, the protective effect of donor cells can be examined with a reduced contribution by the hosts own immune system. An initial non-specific resistance to P.chabaudi infection was observed in irradiated mice, although the infection in most of these mice was subsequently more severe than in non-irradiated mice. The non-specific resistance could be reduced or abolished by injecting lymphoid cells into mice shortly after irradiation or by infecting irradiated mice more than 15 days after irradiation. Other workers suggest that following irradiation, the reticulo-endothelial system is stimulated at the time that the non-specific resistance to P.chabaudi was observed. b) the adoptive transfer of immunity in syngeneic mice with enriched subpopulations of splenic immune T cells, B. cells, bone marrow cells and phagocytes. Immunity to P.chabaudi could be adoptively transferred with enriched spleen subpopulations of immune T cells or immune B cells in mice which had been irradiated 600 or 300 rads. The protective effects of unfractionated immune cells was, however, usually better than that of either immune T or F cell subpopulations. In most experiments enriched immune T cell recipients were more likely to suffer relapsing patent parasitaemias than either enriched immune B cell recipients or unfractionated immune cell recipients. In one experiment a comparison was made of the course of P.chabaudi infection in mice which had been irradiated with either 600 rads or 300 rads and which received injections of different immune cells. A dose of 600 rads permits the immune system of mice to recover from the effects of irradiation, but a dose of 800 rads is lethal to mice unless lymphoid cells are injected after irradiation. It was found that in recipients of enriched immune T or B cells, which had been irradiated with 600 rads, the parasitaemia became subpatent before their equivalents irradiated with 800 rads, but that there was little difference in parasitaemias between recipients of unfractionated immune cells given 600 or 800 rads. Experiments in which enriched immune T cells and B cells were recombined and injected into syngeneic mice gave inconclusive results as to whether the immune subpopulations acted synergistically. Similar experiments in which immune subpopulations of lymphoid cells were recombined with normal subpopulations of lymphoid cells demonstrated that the latter cells did not enhance the protective effect of the former cells. Bone marrow cells from immune mice were able to confer some protection on syngeneic recipients, but were not as protective as enriched immune T cells or B cells. The results obtained in adoptive transfer experiments using phagocytic cells from the spleen of immune mice depended on the length of time spleen cells were incubated in petri-dishes at 37° C before harvesting the phagocytes. Using C57B1 mice, phagocytes harvested after 15 hours incubation were as protective as unfractionated immune cells in a cell transfer experiment, but phagocytes harvested after 16 hours incubation were not protective. Examination of NIH phagocytic cells after 2.5 hours incubation at 37°C, which were as protective as unfractionated immune spleen cells in a cell transfer experiment, demonstrated that the petri-dish adherent cells may have contained B lymphocytes. c) The passive transfer of immunity with serum from P.chabaudi infected mice. The passive transfer of serum from C57B1 mice which had been previously infected with P.chabaudi to normal or irradiated syngeneic mice demonstrated that the serum recipients were initially protected from infection. Irradiated mice, however, were delayed longer in the onset of parasitaemia compared to non-irradiated mice. Using NIH mice, sera were collected from unfractionated immune spleen cell recipients, enriched immune T cell recipients and normal spleen recipients on the 11th day of a P.chabaudi infection, just after peak parasitaemia, and also on the 14th day of infection. On day 14, all immune cells recipients and most of the enriched immune T cell recipients had become subpatent but all normal cell recipients still had patent infections. Sera collected from the different spleen cell recipients on the 11th day of infection and passively transferred to irradiated mice demonstrated little protection. Sera collected on the 14th day of infect ion, however, reflected the immune status of the donors in their protective properties in mice infected with P.chabaudi. The serum from unfractionated immune cell recipients was the most protective of the 3 sera when compared to normal NIH serum and the serum from enriched immune T cell recipients was slightly protective, but the serum from normal cell recipients produced an enhanced infection in mice infected with P.chabaudi. d) Antibody-dependent cell-mediated cytotoxicity of spleen cells in P.chabaudi infected mice. In a preliminary investigation of K cell activity in the spleens of P.chabaudi infected mice, it was found that there was an increased activity of K cells collected at around peak parasitaemia compared to the activity of K cells in non-infected mice, and that this increased activity could also be found in mice which had recently become subpatent. As the target cell for antibody-dependent cell-mediated cytotoxicity employed was the thick red blood cell, it is not known whether the K cell is involved in the killing of P.chabaudi parasites. These results suggest that both T cells and B cells and antibody may be important in the immune response to P.chabaudi in mice. Primed T cells may act as helper cells in the production of malarial antibodies, but, as enriched primed T cells could confer protection on immunodepressed mice, it is possible that a cell-mediated mechanism of immunity may also exist.
Resumo:
Although vaccines have widely been regarded as the most cost-effective way to improve public health, for some organisms new technological advances in vaccine design and delivery, incurring additional developmental costs, will be essential. These organisms are typically those for which natural immunity is either slow to develop or does not develop at all. Clearly, such organisms have evolved strategies to evade immune responses and innovative approaches will be required to induce a type of immune response which is both different to that which develops naturally and is effective. This article describes some approaches to develop vaccines for two such organisms (malaria parasites and Streptococcus pyogenes (group A Streptococcus)) that are associated with widespread mortality and morbidity, mostly in the poorest countries of the world. At this stage, the challenges are primarily scientific, but if these hurdles are surmounted then the challenges will become financial ones - developing much needed vaccines for people least able to afford them. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.