76 resultados para Pinhole collimator


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target’s three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study describes a method for labeling Salmonella typhymurium with iodine-131 to evaluate both the morphological and the functional characteristics of the reticulo-endothelial system. A suspension containing 2 x 10(9) bacteria per ml was labeled with carrier-free Na131I without reductor, with a labeling yield of 46.5 ± 3% and 3.5 ± 1.3% of free Iodine-131. The biodistribution of the labeled bacteria in rats was studied with a large field-of-view scintillation camera equiped with a pinhole collimator. Whole body images were obtained 15 and 30 minutes after intravenous injection of the labeled microorganisms. Images showed accumulation of bacteria in the liver and both normal and transplanted spleens of the animals. Autoradiographs of liver and spleen demonstrated labeled bacteria within the cells of the reticulo-endothelial system. The method described is easy to perform, has a good labeling yield and allows the functional evaluation of the reticulo-monophagocytic system, including transplanted spleens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subtractive imaging in confocal fluorescence light microscopy is based on the subtraction of a suitably weighted widefield image from a confocal image. An approximation to a widefield image can be obtained by detection with an opened confocal pinhole. The subtraction of images enhances the resolution in-plane as well as along the optic axis. Due to the linearity of the approach, the effect of subtractive imaging in Fourier-space corresponds to a reduction of low spatial frequency contributions leading to a relative enhancement of the high frequencies. Along the direction of the optic axis this also results in an improved sectioning. Image processing can achieve a similar effect. However, a 3D volume dataset must be acquired and processed, yielding a result essentially identical to subtractive imaging but superior in signal-to-noise ratio. The latter can be increased further with the technique of weighted averaging in Fourier-space. A comparison of 2D and 3D experimental data analysed with subtractive imaging, the equivalent Fourier-space processing of the confocal data only, and Fourier-space weighted averaging is presented. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous Monte Carlo studies have investigated the multileaf collimator (MLC) contribution to the build-up region for fields in which the MLC leaves were fully blocking the openings defined by the collimation jaws. In the present work, we investigate the same effect but for symmetric and asymmetric MLC defined field sizes (2×2, 4×4, 10×10 and 3×7 cm2). A Varian 2100C/D accelerator with 120-leaf MLC is accurately modeled fora6MVphoton beam using the BEAMnrc/EGSnrc code. Our results indicate that particles scattered from accelerator head and MLC are responsible for the increase of about 7% on the surface dose when comparing 2×2 and 10×10 cm2 fields. We found that the MLC contribution to the total build-up dose is about 2% for the 2×2 cm2 field and less than 1% for the largest fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the local control and complication rates for children with papillary and/or macular retinoblastoma progressing after chemotherapy and undergoing stereotactic radiotherapy (SRT) with a micromultileaf collimator. METHODS AND MATERIALS: Between 2004 and 2008, 11 children (15 eyes) with macular and/or papillary retinoblastoma were treated with SRT. The mean age was 19 months (range, 2-111). Of the 15 eyes, 7, 6, and 2 were classified as International Classification of Intraocular Retinoblastoma Group B, C, and E, respectively. The delivered dose of SRT was 50.4 Gy in 28 fractions using a dedicated micromultileaf collimator linear accelerator. RESULTS: The median follow-up was 20 months (range, 13-39). Local control was achieved in 13 eyes (87%). The actuarial 1- and 2-year local control rates were both 82%. SRT was well tolerated. Late adverse events were reported in 4 patients. Of the 4 patients, 2 had developed focal microangiopathy 20 months after SRT; 1 had developed a transient recurrence of retinal detachment; and 1 had developed bilateral cataracts. No optic neuropathy was observed. CONCLUSIONS: Linear accelerator-based SRT for papillary and/or macular retinoblastoma in children resulted in excellent tumor control rates with acceptable toxicity. Additional research regarding SRT and its intrinsic organ-at-risk sparing capability is justified in the framework of prospective trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the local control and complication rates for children with papillary and/or macular retinoblastoma progressing after chemotherapy and undergoing stereotactic radiotherapy (SRT) with a micromultileaf collimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metal-less RXI collimator has been designed. Unlike to the conventional RXI collimators, whose back surface and central part of the front surface have to be metalized, this collimator does not include any mirrored surface. The back surface is designed as a grooved surface providing two TIR reflections for all rays impinging on it. The main advantage of the presented design is lower manufacturing cost since there is no need for the expensive process of metalization. Also, unlike to the conventional RXI collimators this design performs good colour mixing. The first prototype of V-groove RXI collimator has been made of PMMA by direct cutting using a five axis diamond turning machine. The experimental measurements of the first prototype are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metal-less RXI collimator has been designed using the Simultaneous multiple surface method (SMS). Unlike conventional RXI collimators, whose back surface and parts of the front surface have to be metalized, this collimator is completely metal-free, made only of plastic (PMMA). The collimator’s back surface is designed as a grooved surface providing two TIR reflections for all rays impinging on it. One advantage of the design is the lower manufacturing cost, since there is no need for the expensive process of metalization. More importantly, unlike conventional RXI collimators, this design performs good colour mixing, as well as being very insensitive to the source non-uniformities. The experimental measurements of the first prototype show good agreement with the simulated design.