843 resultados para Physically Impaired Athletes
Resumo:
"May 1991."
Resumo:
"March 1959"
Resumo:
In sport climbing, athletes with vision impairments are constantly accompanied by their guides – usually trainers – both during the preparatory inspection of the routes and whilst climbing. Trainers are, so to speak, the climbers’ eyes, in the sense that they systematically put their vision in the service of the climbers’ mobility and sporting performance. The synergy between trainers and athletes is based on peculiar, strictly multimodal interactive practices that are focused on the body and on its constantly evolving sensory engagement with the materiality of routes. In this context, sensory perception and embodied actions required to plan and execute the climb are configured as genuinely interactive accomplishments. Drawing on the theoretical framework of Embodied and Situated Cognition and on the methodology of Conversation Analysis, this thesis engages in the multimodal analysis of trainer-athlete interactions in paraclimbing. The analysis is based on a corpus of video recorded climbing sessions. The major findings of the study can be summarized as follows. 1) Intercorporeality is key to interactions between trainers and athletes with visual impairments. The participants orient to perceiving the climbing space and acting in it as a ‘We’. 2) The grammar, lexicon, prosody, and timing of the trainers’ instructions are finely tuned to the ongoing corporeal experience of the climbers. 3) Climbers with visual impairments build their actions by using sensory resources that are provided by their trainers. This result is of particular importance as it shows that resources and constraints for action are in a fundamental way constituted in interaction with Others and with specific socio-material ecologies, rather than being defined a priori by the organs and functions of individuals’ body and mind. Individual capabilities are thus enhanced and extended in interaction, which encourages a more ecological view of (dis)ability.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The interface between humans and technology is a rapidly changing field. In particular as technological methods have improved dramatically so interaction has become possible that could only be speculated about even a decade earlier. This interaction can though take on a wide range of forms. Indeed standard buttons and dials with televisual feedback are perhaps a common example. But now virtual reality systems, wearable computers and most of all, implant technology are throwing up a completely new concept, namely a symbiosis of human and machine. No longer is it sensible simply to consider how a human interacts with a machine, but rather how the human-machine symbiotic combination interacts with the outside world. In this paper we take a look at some of the recent approaches, putting implant technology in context. We also consider some specific practical examples which may well alter the way we look at this symbiosis in the future. The main area of interest as far as symbiotic studies are concerned is clearly the use of implant technology, particularly where a connection is made between technology and the human brain and/or nervous system. Often pilot tests and experimentation has been carried out apriori to investigate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies are discussed briefly here. The paper however concentrates on human experimentation, in particular that carried out by the authors themselves, firstly to indicate what possibilities exist as of now with available technology, but perhaps more importantly to also show what might be possible with such technology in the future and how this may well have extensive social effects. The driving force behind the integration of technology with humans on a neural level has historically been to restore lost functionality in individuals who have suffered neurological trauma such as spinal cord damage, or who suffer from a debilitating disease such as lateral amyotrophic sclerosis. Very few would argue against the development of implants to enable such people to control their environment, or some aspect of their own body functions. Indeed this technology in the short term has applications for amelioration of symptoms for the physically impaired, such as alternative senses being bestowed on a blind or deaf individual. However the issue becomes distinctly more complex when it is proposed that such technology be used on those with no medical need, but instead who wish to enhance and augment their own bodies, particularly in terms of their mental attributes. These issues are discussed here in the light of practical experimental test results and their ethical consequences.
Resumo:
Competitive orienteering is the sport of finding one’s way in unknown terrain with the help of a map and a compass; there may or may not be a time limit. Developed in Scandinavia, the sport was popularized first in Europe in the twentieth century and is now becoming popular around the world. Different disciplines include foot, ski, and bicycle orienteering, as well as trail orienteering for physically impaired persons. The sport offers different competition formats and age categories that allow participation with adapted physical and mental demands for all ages.
Resumo:
This paper presents general considerations for working with athletes with disabilities and the usefulness and possible modification of specific mental skills for those athletes. Common concerns for athletes with specific disabilities are discussed. Specific disabilities are considered under the headings of amputees, blind and visually impaired, cerebral palsy, deaf and hearing impaired, intellectual disabilities, and wheelchair. Arousal control, goal setting, attention/concentration, body awareness, imagery, self-confidence, and precompetition preparation are discussed in terms of disability-specific issues as well as suggestions for application.
Resumo:
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.
Resumo:
Adolescence is an important time for acquiring high peak bone mass. Physical activity is known to be beneficial to bone development. The effect of estrogen-progestin contraceptives (EPC) is still controversial. Altogether 142 (52 gymnasts, 46 runners, and 42 controls) adolescent women participated in this study, which is based on two 7-year (n =142), one 6-year (n =140) and one 4-year (n =122) follow-ups. Information on physical activity, menstrual history, sexual maturation, nutrition, living habits and health status was obtained through questionnaires and interviews. The bone mineral density (BMD) and content (BMC) of lumbar spine (LS) and femoral neck (FN) were measured by dual- energy X-ray absoptiometry. Calcaneal sonographic measurements were also made. The physical activity of the athletes participating in this study decreased after 3-year follow-up. High-impact exercise was beneficial to bones. LS and FN BMC was higher in gymnasts than in controls during the follow-up. Reduction in physical activity had negative effects on bone mass. LS and FN BMC increased less in the group having reduced their physical activity more than 50%, compared with those continuing at the previous level (1.69 g, p=0.021; 0.14 g, p=0.015, respectively). The amount of physical activity was the only significant parameter accounting for the calcaneal sonography measurements at 6-year follow-up (11.3%) and reduced activity level was associated with lower sonographic values. Long-term low-dose EPC use seemed to prevent normal bone mass acquisition. There was a significant trend towards a smaller increase in LS and FN BMC among long-term EPC users. In conclusion, this study confirms that high-impact exercise is beneficial to bones and that the benefits are partly maintained even after a clear reduction in training level at least for 4 years. Continued exercise is needed to retain all acquired benefits. The bone mass gained and maintained can possibly be maximized in adolescence by implementing high-impact exercise for youngsters. The peak bone mass of the young women participating in the study may be reached before the age of 20. Use of low-dose EPCs seems to suppress normal bone mass acquisition.
Resumo:
This paper compares the performance of perceptual-motor skills of physically and mentally normal hearing-impaired children who have participated in a physical education program with those who have not participated in a physical education program.
Resumo:
The yeast Sec1p protein functions in the docking of secretory transport vesicles to the plasma membrane. We previously have cloned two yeast genes encoding syntaxins, SSO1 and SSO2, as suppressors of the temperature-sensitive sec1–1 mutation. We now describe a third suppressor of sec1–1, which we call MSO1. Unlike SSO1 and SSO2, MSO1 is specific for sec1 and does not suppress mutations in any other SEC genes. MSO1 encodes a small hydrophilic protein that is enriched in a microsomal membrane fraction. Cells that lack MSO1 are viable, but they accumulate secretory vesicles in the bud, indicating that the terminal step in secretion is partially impaired. Moreover, loss of MSO1 shows synthetic lethality with mutations in SEC1, SEC2, and SEC4, and other synthetic phenotypes with mutations in several other late-acting SEC genes. We further found that Mso1p interacts with Sec1p both in vitro and in the two-hybrid system. These findings suggest that Mso1p is a component of the secretory vesicle docking complex whose function is closely associated with that of Sec1p.
Resumo:
Objective: The purpose of this study is to educate allied health professionals and female athletes of the anatomy of the pelvic floor, and the pathology, etiology, and prevalence of stress urinary incontinence in female athletes. Background: Urinary incontinence is not a life-threatening or dangerous condition, but it is socially embarrassing, may cause the individual to remove herself from social situations, and decrease quality of life. While typically associated with parous women who had vaginal delivery, research has shown prevalence of the condition in physically active women of all ages. Stress urinary incontinence has shown to lead to withdrawal from participation in high-impact activities such as gymnastics, aerobics, and running. It may be considered a barrier for life-long athletics participation in women. Description: An in-depth introduction to the cause and origin of stress urinary incontinence including review of the female pelvic floor anatomy and prevalence of stress urinary incontinence in the female athletic population. Clinical Advantages: Athletic trainers and other allied health professionals will develop an understanding of the multiple mechanisms that cause stress urinary incontinence. Clinician competency of the dynamics and mechanism of urinary incontinence prepares the individual to learn diagnostics, prevention, pharmacological intervention, and treatment of this pathology.
Resumo:
Growing evidence suggests that regular, moderate-intensity physical activity is associated with an attenuation of leucocyte telomere length (LTL) shortening. However, more controversy exists regarding higher exercise loads, such as those imposed by elite sports participation. We have investigated LTL differences between young elite athletes (n=61, 54% men, aged [mean±SD] 27.2±4.9 years) and their healthy non-smoker, physically inactive controls (n=64, 52% men, 28.9±6.3 years) using analysis of variance (ANOVA). Elite athletes had, on average, higher LTL than controls subjects (0.89±0.26 vs 0.78±0.31, p=0.013 for the group effect, with no significant sex [p=0.995] or age effect [p=0.114]). Our results suggest that young elite athletes have longer telomeres than their inactive peers. Further research might assess the LTL of elite athletes of varying ages compared to both age-matched active and inactive individuals, respectively.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.