985 resultados para Photoluminescence properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaSiO3 : Dy3+ (1-5 mol. %) nanophosphors were synthesized by a simple low-temperature solution combustion method. Powder X-ray diffraction patterns revealed that the phosphors are crystalline and can be indexed to a monoclinic phase. Scanning electron micrographs exhibited faceted plates and angular crystals of different sizes with a porous nature. Photoluminescence properties of the Dy3+-doped CaSiO3 phosphors were observed and analyzed. Emission peaks at 483, 573 and 610 nm corresponding to Dy3+ were assigned as F-4(9/2)-> H-6(15/2), F-4(9/2) -> H-6(13/2) and F-4(9/2) -> H-6(11/2) transitions, respectively, and dominated by the Dy3+ F-4(9/2) -> H-6(13/2) hyperfine transition. Experimental results revealed that the luminescence intensity was affected by both heat treatment and the concentration of Dy3+ (1-5 mol. %) in the CaSiO3 host. Optimal luminescence conditions were achieved when the concentration of Dy3+ was 2 mol. %. UV-visible absorption features an intense band at 240 nm, which corresponds to an O-Si ligand-to-metal charge transfer band in the SiO32- group. The optical energy band gap for the undoped sample was found to be 5.45 eV, whereas in Dy3+-doped phosphors it varies in the range 5.49-5.65 eV. The optical energy gap widens with increase of Dy3+ ion dopant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (0.5-8.0 mol%) nanophosphors have been prepared by low temperature solution combustion method using metal nitrates as oxidizers and oxalyl dihydrazide (ODH) as a fuel. The phosphors are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence (PL) techniques. PXRD patterns of as-formed and calcined (800 degrees C, 3 h) Gd2O3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 20 to 50 nm. Eu3+ doping changes the structure from monoclinic to mixed phase of monoclinic and cubic. SEM micrographs shows the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. Upon 254 nm excitation the photoluminescence of the Gd2O3:Eu3+ particles show red emission at 611 nm corresponding to D-5(0)-> F-7(2) transition. It is observed that PL intensity increases with calcination temperature. This might be attributed to better crystallization and eliminates the defects, which serve as centers of non-radiative relaxation for nanomaterials. It is observed that the optical energy gap (E-g) is widened with increase Eu3+ content. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films have been deposited on glass substrates via sol-gel technique using zinc acetate dihydrate as precursor by spin coating of the sol at 2000 rpm. Effects of annealing temperature on optical, structural and photo luminescence properties of the deposited ZnO films have been investigated. The phase transition from amorphous to polycrystalline hexagonal wurtzite structure was observed at an annealing temperature of 400 degrees C. An average transmittance of 87% in the visible region has been obtained at room temperature. The optical transmittance has slightly increased with increase of annealing temperature. The band gap energy was estimated by Tauc's method and found to be 3.22 eV at room temperature. The optical band gap energy has decreased with increasing annealing temperature. The photoluminescence (PL) intensity increased with annealing temperature up to 200 degrees C and decreased at 300 degrees C. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different phases of Eu3+ activated gadolinium oxide (Gd (OH)(3), GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (GAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)(3):Eu after calcinations at 350 and 600 degrees C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)(3), lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between D-5(0) and F-7 configurations. Thermoluminescence glow curves of Gd (OH)(3): Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source ((CO)-C-60) in the dose range 10-60 Gy at a heating rate of 6.7 degrees C sec(-1). Well resolved glow peaks in the range 42-45, 67-76,95-103 and 102-125 degrees C were observed. When gamma-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in gamma-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 degrees C and a new shouldered peak at 86 degrees C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn(i) and V(o)(+) caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at similar to 343 degrees C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various gamma-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaSiO3:Dy3+ (1-5 mol%) nanophosphors have been prepared by a low temperature solution combustion method. The structural and luminescence (ionoluminescence; IL and photoluminescence; PL) studies have been carried out for pristine and ion irradiated samples. The XRD patterns of pristine sample show a prominent peak at (320) for the monoclinic structure of beta-CaSiO3. Upon ion irradiation, the intensity of the prominent peak is decreased at the fluence of 7.81 x 10(12) ions cm(-2) and at higher fluence of 15.62 x 10(12) ions cm(-2), the prominent peak completely vanishes. The decrease in peak intensity might be due to the stress induced point defects. On-line IL and in situ PL studies have been carried out on pelletized samples bombarded with 100 MeV Si7+ ions with fluences in the range (7.81-15.62) x 10(12) ions cm(-2). The characteristic emission peaks at 481,574, 664 and 754 nm recorded in both IL and PL are attributed to the luminescence centers activated by Dy3+ ions. It is found that IL and PL emissions intensity decreases with increase in Si7+ ion fluence. The decrease in intensity can be due to the destruction of Si-O-Si and O-Si-O type species present on the surface of the sample. FTIR studies also confirm the Si-O-Si and O-Si-O type species observed to be sensitive for swift heavy ion (SHI) irradiated samples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800A degrees C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV-Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer's method and Williamson-Hall plots and are found to be in the ranges 40-60 nm and 30-80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at similar to 590, 612 and 625 nm, which are due to the transitions D-5(0)-> F-7(0), D-5(0)-> F-7(2) and D-5(0)-> F-7(3) of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s(2)-> 6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380A degrees C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Dy3+ (0.5-9 mol%) and Li+ (0.5-3 mol%) co-doped strontium cerate (Sr2CeO4) nanopowders are synthesized by low temperature solution combustion synthesis. The effects of Li+ doping on the crystal structure, chemical composition, surface morphology and photoluminescence properties are investigated. The X-ray diffraction results confirm that all the samples calcined at 900 degrees C show the pure orthorhombic (Pbam) phase. Scanning electron microscopy analysis reveals that the particles adopt irregular morphology and the porous nature of the product. Room temperature photoluminescence results indicate that the phosphor can be effectively excited by near UV radiation (290 to 390 nm) which results in the blue (484 nm) and yellow (575 nm) emission. Furthermore, PL emission intensity and wavelength are highly dependent on the concentration of Li+ doping. The emission intensity is enhanced by similar to 3 fold with Li+ doping. White light is achieved by merely varying dopant concentration. The colour purity of the phosphor is confirmed by CIE co-ordinates (x = 0.298, y = 0.360). The study demonstrates a simple and efficient method for the synthesis of novel nanophosphors with enhanced white emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of scheelite-type Eu3+-activated CaMoO4 phosphors were synthesized by the nitrate-citrate gel combustion method. All the compounds crystallized in the tetragonal structure with space group I4(1)/a (No. 88). FESEM results reveal the spherical-like morphology. The CaMoO4 phosphor exhibited broad emission centered at 500 nm under the excitation of 298 nm wavelength, while Eu3+-activated CaMoO4 shows an intense characteristic red emission peak at 615 nm at different excitation wavelengths, due to D-5(0) -> F-7(2) transition of Eu3+ ions. The intensities of transitions between different J levels depend on the symmetry of the local environment of Eu3+ ions and were estimated using the Judd-Ofelt analysis. The high asymmetric ratio revealed that Eu3+ occupies sites with a low symmetry and without an inversion center. The CIE chromaticity co-ordinates (x, y) were calculated from emission spectra, and the values were close to the NTSC standard. Therefore, the present phosphor is highly useful for LEDs applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Eu3+ activated Ce0.5Al0.5O2-delta nanophosphors have been synthesized by the nitrate - citrate gel combustion method. All the compounds crystallized in the cubic fluorite CeO2 structure with space group Fm-3m (No. 225). FESEM revealed the flakes-like morphology. The average particle size was estimated from TEM studies and found to be in the range 15-25 nm. The values were in good agreement with the Scherer's method. In photoluminescence (PL) spectra, the D-5(0) -> F-7(2) (612 nm) transition dominates than other transitions which indicates that the Eu3+ ions occupy a site without inversion center. CIE chromaticity diagram confirmed that these nanophosphors can be useful in the fabrication of red component in white light emitting diodes (WLEDs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8 x 10(-4) eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 MU eV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

kinds of Yb3+- and Na+-codoped CaF2 laser crystal with different Na:Yb ratios of 0, 1.5, and 10 are grown by the temperature gradient technique. Room-temperature absorption, photoluminescence spectra, and fluorescence lifetimes belonging to the transitions between ground state F-2(7/2) and excited state F-2(5/2) of Yb3+ ions in the three crystals are measured to study the effect of Na+. Experimental results show that codoping Na+ ions in different Na:Yb ratios can modulate the spectroscopy and photoluminescence properties of Yb3+ ions in a CaF2 lattice in a large scope. (c) 2005 Optical Society of America