996 resultados para Photoluminescence measurements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium-implanted silicones were treated by lamp-heating rapid thermal annealing (RTA). Two types of erbium-related photoluminescence spectra appear under different anneal temperatures. 750 degrees C annealing optimizes the luminescence intensity, which does not change with anneal time. Exciton-mediated energy transfer model in erbium-doped silicon was presented. The emission intensity is related to optical active erbium concentration, lifetime of excited Er3+ ion and spontaneous emission time. The thermal quenching of the erbium luminescence in Si is caused by thermal ionization of erbium-bound exciton complex and nonradiative energy backtransfer processes, which correspond to the activation energy of 6.6 meV and 47.4 meV respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips (NCNTPs) have been synthesized using customized plasma-enhanced hot filament chemical vapor deposition. The morphological, structural, and photoluminescent properties of the NCNTPs are investigated using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The photoluminescence measurements show that the NCNTPs predominantly emit a green band at room temperature while strong blue emission is generated at 77 K. It is shown that these very different emission behaviors are related to the change of the optical band-gap and the concentration of the paramagnetic defects of the carbon nanotips. The studies shed light on the controversies on the photoluminescence mechanisms of carbon-based amorphous films measured at different temperatures. The relevance of the results to the use of nitrogenated carbon nanotips in light-emitting optoelectronic devices is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ga1-xMnxSb crystals are grown with different Mn doping concentrations by the horizontal Bridgman method (x = 0 - 0.04). Optical absorption and photoluminescence studies are carried out in the temperature range 3-300 K. Optical absorption studies reveal that the inter-valence band transition from the spin-orbit split-off band to the light/heavy hole bands is dominant over the fundamental valence band to conduction band absorption. In higher doped crystals, the fundamental absorption peak is merged with the inter-valence band transition and could not be resolved. Photoluminescence measurements in heavily doped crystals reveal the band gap narrowing and band filling effects due to the Fermi level shifting into the valence band.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of beta particles interaction on the optical properties of MOCVD grown GaN is reported. A significant change in luminescence properties of GaN is observed after exposing the material with 0.6 MeV beta particles with low dose of 10(12) cm(-2). The results obtained from photoluminescence measurements of irradiated GaN samples in low dose are found contradictory to those reported in literature for samples irradiated with heavy dose (> 10(15) cm(-2)) of electron. An increase in intensity of yellow luminescence has been observed with increasing dose of beta particles which is in disagreement to the already reported results in literature for heavily irradiated samples. A model has been proposed to sort out this inconsistency. The increase in YL intensity at low dose is attributed to the increase in concentration of VGaON complex whereas production of non-radiative VGaON clusters is assumed to justify the decrease in YL intensity at high dose.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GaN nanowires have been grown with and without In as an additional source. The effects of In surfactant on the crystal quality and photoluminescence property of GaN nanowires are reported for the first time. X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and photoluminescence measurements are employed to analyse the products. The results show that introducing a certain amount of In surfactant during the growth process can improve the crystal quality of the GaN nanowires, and enhance the photolurainescence of them. In addition, the as-prepared GaN nanowires have the advantage of being easy to be separated, which will benefit the subsequent nanodevice fabrication.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

InAs quantum wires (QWRs) have been fabricated on the InP(001), which has been evidenced by TEM and polarized photoluminescence measurements (PPL). The monlayer-splitting peaks (MSPs) in the PL spectrum of InAs QWRs can be clearly observed at low temperature measurements. Supposing a peak-shift of MSP identical to that of bulk material, we obtain the thermal activation energies of up to 5 MSPs. The smaller thermal activation energies for the MSPs of higher energy lead to the fast red-shift of PL peak as a whole.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In-x Ga1-xN/GaN multiple quantum well (MQW) samples with strain-layer thickness lager/less than the critical one are investigated by temperature-dependent photoluminescence and transmission electron microscopy, and double crystal x-ray diffraction. For the sample with the strained-layer thickness greater than the critical thickness, we observe a high density of threading dislocations generated at the MQW layers and extended to the cap layer. These dislocations result from relaxation of the strain layer when its thickness is beyond the critical thickness. For the sample with the strained-layer thickness greater than the critical thickness, temperature-dependent photoluminescence measurements give evidence that dislocations generated from the MQW layers due to strain relaxation are main reason of the poor photoluminescence property, and the dominating status change of the main peak with increasing temperature is attributed to the change of the radiative recombination from the areas including dislocations to the ones excluding dislocations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GaAsSb/GaAs single quantum wells grown by molecular-beam epitaxy are studied by selectively excited photoluminescence measurements. We have simultaneously observed the photoluminescence (PL) from both type-I and type-II transitions in the samples. The two transitions exhibit different PL behavior under different excitation energies. As expected, the peak energy of the type-I emission remains constant in the entire excitation energy range we used, while the type-II transition shows a significant blueshift with increasing excitation energy. The observed blueshift can be well explained by an electron-hole charge separation model at interface. This result, along with the excitation-power-dependent PL and the measured longer carrier decay time, provides more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum well structures. (C) 2002 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a new self-assembled quantum dot system where InGaAs dots are formed on an InAlAs wetting layer and embedded in the GaAs matrix. The structure is realized by special sample designation and demonstrated by low-temperature photoluminescence measurements. In contrast to the traditional InAs/GaAs quantum dots dominated by the ensemble effect, the temperature dependence of the photoluminescence of such a quantum dot structure behaves as decoupled quantum dots. This can be attributed to the enhanced potential confinement for the dots provided by a higher-energy barrier in the wetting layer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photoluminescence measurements have been performed in Si-rich a-SiNx:H (x less than or equal to 1.3) alloys prepared by glow discharge. It is observed that the blue shift of the peak of room temperature luminescence spectrum with increasing N content parallels increasing intensity. Two distinct luminescence mechanisms are proposed in a-SiNx:H with the threshold near x = 0.8. For low x, the samples show typical luminescence properties of a-Si:H, while for high x, the normalized luminescence bands are independent of temperature. Combining percolation theory, the luminescence origins are discussed on the basis of Brodsky's quantum well model. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photoluminescence measurements were performed on p-type co-doping effects of C, As, and Mg in GaN. The dopants were incorporated into GaN by ion implantation performed at 77 K. We find that the 3.42 eV luminescence line is sensitive to hole concentration, and propose that after cartful calibration the 3.42 eV line may be used as a probe to measure hole concentration in GaN. Simply doping one kind of accepters will not result in holes, while co-doping can substantially improve p-type doping efficiency. As + C and As + Mg co-doping induce an acceptor level of 180 meV above the valence band. Mg + C co-doping is the most promising method for p-type doping, the related acceptor level is determined to be as shallow as 130 meV. The improvement of the doping efficiency by co-doping is probably due to the decrease of the acceptor ionization energy. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fourier transform photoluminescence measurements were carried out to investigate the optical transitions in InxGa1-xAs/InyAl1-yAs one-side-modulation-doped asymmetric step quantum wells. Samples with electron density n(s) between 0.8 and 5.3 x 10(12) cm(-2) rue studied. Strong recombination involving one to three populated electron subbands with the first heavy-hole subband is observed. Fermi edge singularity (FES) clearly can be observed for some samples. The electron subband energies in the InGaAs/InAlAs step quantum wells were calculated by a self-consistent method, taking into account strain and nonparabolicity effects and the comparison with the experimental data shows a good agreement. Our results can help improve understanding for the application of InGaAs/InAlAs step quantum wells in microelectronic and optoelectronic devices. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mesures effectuées dans le laboratoire de caractérisation optique des semi-conducteurs du Prof. Richard Leonelli du département de physique de l'université de Montréal. Les nanofils d'InGaN/GaN ont été fournis par le groupe du Prof. Zetian Mi du département de génie électrique et informatique de l'université McGill.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hierarchical assemblies of CaMoO4 (CM) nano-octahedrons were obtained by microwave-assisted hydrothemial synthesis at 120 degrees C for different times. These structures were structurally, morphologically and optically characterized by X-ray diffraction, micro-Raman spectroscopy, field-emission gun scanning electron microscopy, ultraviolet-visible absorption spectroscopy and photoluminescence measurements. First-principle calculations have been carried out to understand the structural and electronic order-disorder effects as a function of the particle/region size. Supercells of different dimensions were constructed to simulate the geometric distortions along both they and z planes of the scheelite structure. Based on these experimental results and with the help of detailed structural simulations, we were able to model the nature of the order-disorder in this important class of materials and discuss the consequent implications on its physical properties, in particular, the photoluminescence properties of CM nanocrystals.