950 resultados para Pharmaceutical Application
Resumo:
The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.
Resumo:
Association of poly(carboxylic acids) and non-ionic polymers in solutions via hydrogen bonding results in formation of novel polymeric materials-interpolymer complexes. These materials can potentially be used for design of novel mucoadhesive dosage forms, development of solid drug dispersions and solubilisation of poorly soluble drugs, encapsulation technologies, preparation of nanoparticles, hydrogels, in situ gelling systems and electrically erodible materials. This review is an attempt to analyse and systematise existing literature on pharmaceutical application of hydrogen-bonded interpolymer complexes. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Grewia gum is obtained from the inner stem bark of the edible plant Grewia mollis Juss (Fam. Tiliaceae) which grows widely in the middle belt region of Nigeria, and is also cultivated. The dried and pulverised inner stem bark is used as a thickening agent in some food delicacies in that region of the country. This ability of the material to increase solution viscosity has generated a lot of interest and is the catalysing momentum for this research. Such materials have been used as stabilizers or suspending agents in cosmetics, foods and liquid medications, and as mucoadhesives and controlled release polymeric matrices in solid dosage forms. The physicochemical characterization of candidate excipients forms an essential step towards establishing suitability for pharmaceutical application. For natural gums, this usually requires isolation of the gum from the storage site by extraction processes. Grewia polysaccharide gum was extracted and dried using techniques such as air-drying, freeze-drying or spray-drying. Component analysis of the gum showed that it contains five neutral sugars: glucose, galactose, rhamnose, arabinose and xylose. The gum contains traces of elements such as zinc, magnesium, calcium and phosphorus. At low substance weight, the gum hydrates in aqueous medium swelling and dispersing to give a highly viscous dispersion with pseudoplasmic flow behaviour. The method by which drying is achieved can have significant effect on some physicochemical properties of the gum. Consequently, the intrinsic viscosity and molecular weight, and parameters of powder flow were shown to differ with the method of drying. The gum has good thermal stability. In comparison with established excipients, grewia gum may be preferable to gum Arabic or sodium carboxymethylcellulose as a suspending agent in ibuprofen suspension formulations. The release retardant property of the gum was superior to guar and Metolose® in ibuprofen matrices. Similarly, carboxy methylcellulose, Methocel®, gum Arabic or Metolose® may not be preferable to grewia gum when controlled release of a soluble drug like cimetidine is indicated. The mucoadhesive performance of the gum compared favourably with excellent mucoadhesives such as hydroxypropyl methylcellulose, carboxymethylcellulose, guar and carbopol 971 P.
Resumo:
多羟基哌啶类化合物通常称为氮杂糖,由于与糖结构的相似性,亚胺基环醇表现出强的糖苷酶和糖基转移酶抑制活性,可调控在生物识别及酶结构控制中起到重要作用的糖蛋白的生物合成与水解。因此这类抑制剂有望成为与糖代谢紊乱有关的疾病的治疗药物,如:抗糖尿病、抗肿瘤、抗溶酶体贮积症及抗病毒感染(包括艾滋病)等药物。正是由于氮杂糖的重要生物活性及诱人的药用开发前景,近年来,有关氮杂糖及其衍生物的合成、生物活性及应用研究备受关注。 本论文探索了一系列的作为潜在的迈克加成中间体1-C-乙酰甲基/甲氧羰基甲基-5-N-取代呋喃核糖碳苷衍生物在碱的作用下先发生β-消除反应,接着发生分子内的迈克加成反应生成1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物及1-C-甲氧羰基甲基-N-取代氮杂吡喃糖碳苷衍生物的方法,该转变过程为先通过β-消除得到非环状的α/β不饱和共轭酮或酯的中间体,接着5-N-取代氨基与分子内的α/β不饱和共轭酮或酯发生分子内的1,4-亲核加成,其中,2'-酯的环加成立体选择性的得到β型1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物,而2'-酮的环加成得到立体异构体1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物。此外,该类N-取代氮杂吡喃糖碳苷衍生物进一步脱除保护基,得到了一系列新的N-取代氮杂吡喃糖衍生物,拓展了氮杂吡喃糖碳苷分子库。 中间体1-C-(2'-oxoalkyl)-5-N-alkylated glycoribofuranoside的合成是由核糖为原料,通过对其结构修饰,在C-5氮原子上先引入不同的取代基,在C-1上引入乙酰甲基或甲氧羰基甲基。C-5取代氨基的引入通过两种方法:(a) 5-取代链状脂肪氨基可由链状的伯胺直接与5-甲磺酰基发生SN2亲核取代得到;(b) 5-取代芳香氨基可通过芳香醛与C-5氨基缩合再由硼氢化钠还原得到。2'-酰基的引入通过烯丙基氧化得到:2'-酮羰基由醋酸汞和琼斯试剂氧化得到;2'-酯基由高锰酸钾氧化再碘甲烷的作用下得到。 The polyhydroxylated piperidines, commonly be called azasugars. Iminocyclitols and their derivatives have exhibited remarkable biological activity to inhibit glycosidase-processing enzymes, with resulting potential chemotherapeutic applications against diabetes, cancer, lysosomal storage disorders and viral infections including AIDS. Recently, because of the important biological activity and excellent foreground on pharmaceutical application, great attention has been attracted to the synthesis of the new derivatives and analogues. In this dissertation, 1-C-(2'-oxoalkyl)-5-N-substituted-glycoribofuranosides, which used as latent substrates for intramolecular hetero-Michael addition, were converted to 2-ester and 2-ketone aza-C-glycopyranosides by base treatment. The transformation was achieved through β-elimination to an acyclic α/β-conjugated ketone or ester, followed by an intramolecular hetero-Michael addition by the 5-N-alkylated amino group. The 2-ester cycloaddition was highly stereoselective in favor of an equatorial 1-C-substitution while the 2-ketone cycloaddition was produced a pair of stereoisomers of 2′-ketonyl aza-C-glycoside. Additionally, the resultant different N-alkylated aza-C-glycopyranosides could be further prepared for various azasugar library constructions by removal of protecting groups. Synthesis of the key intermediate 1-C-(2'-oxoalkyl)-5-N-alkylated glycoribo- furanoside involved the introduction of 5-substituted amino and 1-C-2′-oxoalkyl groups from D-ribose. The 5-alkylated amino was introduced through two methods: (a) the 5-aliphatic series amino synthesized by the nucleophilic substitution of 5-mesylate using neat ethylamine, propylamine, butylamine, and hexylamine, (b) the 5-aromatic series amino synthesized by various aromatic aldehydes with C-5 amino under NaBH4 reduction. The 1-C-2′-oxoalkyl groups were introduced through oxidation of the ally group: the 1-C-allyl group was oxidized with Hg(OAc)2 and Jones reagent to the 2-ketonyl C-glycoside; the 1-C-allyl group was oxidized with KMnO4 and CH3I/NaHCO3 to 1-C-methyl acetate glycoside.
Resumo:
The focus of this thesis is the preparation of enantiopure sulfoxides by means of copper-catalysed asymmetric sulfoxidation, with particular emphasis on the synthesis of aryl benzyl and aryl alkyl sulfoxides. Chapter 1 contains a review of the methods employed for the asymmetric synthesis of sulfoxides, compounds with many applications in stereoselective synthesis and in some cases with pharmaceutical application. Chapter 1 describes asymmetric oxidation, including metal-catalysed, non metal-catalysed and enzyme-catalysed, in addition to synthetic approaches via nucleophilic substitution of appropriately substituted precursors. Kinetic resolution in oxidation of sulfoxides to the analogous sulfones is also discussed; in certain cases, access to enantioenriched sulfoxides can be achieved via a combination of asymmetric sulfoxidation and complementary kinetic resolution. The design and synthesis of a series of sulfides to enable exploration of the substituent effects of the copper-mediated oxidation was undertaken, and oxidation to the racemic sulfoxides and sulfones to provide reference samples was conducted. Oxidation of the sulfides using copper-Schiff base catalysis was undertaken leading to enantioenriched sulfoxides. The procedure employed is clean, inexpensive, not air-sensitive and utilises aqueous hydrogen peroxide as oxidant. Extensive investigation of the influence of the reaction conditions such as solvent, temperature, copper salt and ligand was undertaken to lead to the optimised conditions. While the direct attachment of one aryl substituent to the sulfide is essential for efficient enantiocontrol, in the case of the second substituent the enantiocontol is dependent on the steric rather than electronic features of the substituent. Significantly, use of naphthyl-substituted sulfides results in excellent enantiocontrol; notably 97% ee, obtained in the oxidation of 2-naphthyl benzyl sulfide, represents the highest enantioselectivity reported to date for a copper-mediated sulfur oxidation. Some insight into the mechanistic features of the copper-mediated sulfur oxidation has been developed based on this work, although further investigation is required to establish the precise nature of the catalytic species responsible for asymmetric sulfur oxidation. Full experimental details, describing the synthesis and structural characterisation, and determination of enantiopurity are included in chapter 3.
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016
Resumo:
Polyphenols are suggested to have human health benefits, yet debate still exists over their value in the diet. This review examines their efficacy and the effect of structural diversity on their reactivity and any implications this may have with respect to possible unfavourable adverse effects. We propose that polyphenols are of benefit to humans through dietary consumption, yet care should be taken over excessive consumption, particularly in some subgroups of the population, e.g. those on certain medications because of complex nutrient–drug interactions. Pharmaceutical application should be avoided until there is greater understanding of absorption and behaviour of polyphenols within the body.
Resumo:
Microemulsions (ME) are thermodynamically stable and isotropic systems of two immiscible liquids (oil/water), stabilized by an interfacial film of surfactants, discovered by Hoar and Schulman in 1943. The study of ME formation is based on three areas of theory: (1) solubilization, (2) interfacial tension and (3) thermodynamics. ME structures are influenced by the physicochemical properties and proportions of their ingredients. The goal of this review is to assess the state of the art of microemulsified systems, from a theoretical viewpoint. Also, recent progress on their clinical application and use as carriers for insoluble compounds is discussed.
Resumo:
The dendrimers of poly (amidoamine) (PAMAM) are nanoparticles which have proven succeed in transporting drugs due to high solubility, low toxicity and ability to control drugs release. Studies have explored the biological potential of dendrimers such as to transport genes, development of vaccines, antiviral, antibacterial and anticancer therapies. This review of literature on the PAMAM dendrimers discusses the architecture and general construction of dendrimers and intrinsic properties of the PAMAM. This study also describes how the PAMAM interact with many drugs and the potential of these macromolecules as well as drug nanocarriers in transdermal routes of administration, ocular, respiratory, oral and intravenous administration. Dendrimers promises good future prospects for the biomedicine.
Resumo:
A square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.