218 resultados para Phantoms antropomórficos


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presença da Medicina Nuclear como modalidade de obtenção de imagens médicas é um dos principais procedimentos utilizados hoje nos centros de saúde, tendo como grande vantagem a capacidade de analisar o comportamento metabólico do paciente, traduzindo-se em diagnósticos precoces. Entretanto, sabe-se que a quantificação em Medicina Nuclear é dificultada por diversos fatores, entre os quais estão a correção de atenuação, espalhamento, algoritmos de reconstrução e modelos assumidos. Neste contexto, o principal objetivo deste projeto foi melhorar a acurácia e a precisão na análise de imagens de PET/CT via processos realísticos e bem controlados. Para esse fim, foi proposta a elaboração de uma estrutura modular, a qual está composta por um conjunto de passos consecutivamente interligados começando com a simulação de phantoms antropomórficos 3D para posteriormente gerar as projeções realísticas PET/CT usando a plataforma GATE (com simulação de Monte Carlo), em seguida é aplicada uma etapa de reconstrução de imagens 3D, na sequência as imagens são filtradas (por meio do filtro de Anscombe/Wiener para a redução de ruído Poisson caraterístico deste tipo de imagens) e, segmentadas (baseados na teoria Fuzzy Connectedness). Uma vez definida a região de interesse (ROI) foram produzidas as Curvas de Atividade de Entrada e Resultante requeridas no processo de análise da dinâmica de compartimentos com o qual foi obtida a quantificação do metabolismo do órgão ou estrutura de estudo. Finalmente, de uma maneira semelhante imagens PET/CT reais fornecidas pelo Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP) foram analisadas. Portanto, concluiu-se que a etapa de filtragem tridimensional usando o filtro Anscombe/Wiener foi relevante e de alto impacto no processo de quantificação metabólica e em outras etapas importantes do projeto em geral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This experimental study aimed the evaluation of the use of anthropomorphic phantoms in the analysis of the influence of the acquisition parameters in the contrast of radiographic images. The analyzed factors were the variation of the peak kilovoltage (kVp) and the product of the filament circuit by the time of exposition (mAs). The influence of these factors was verified for different anthropomorphic phantoms: foot, knee and chest. The image contrast behavior with the simulators was compared to values obtained with the use of an aluminum ladder being the behavior of this reference for analysis and discussion. To assure the reproducibility of images, quality control tests were made and evaluation of procedure conditions before the experiments. The results obtained are shown in a scale of images where it was possible to evaluate the impact in the darkness of images. Regions with different compositions were analyzed which were different in image, this way the values of optical density and contrast are represented as charts and graphics. We conclude that the use of anthropomorphic phantoms in the evaluation of the influence of tension of the tube and time of exposition in the contrast of the radiographic images is not indicated for a quantitative analysis through optical density, once they present incompatible results with the data as reference as the aluminum ladder even so these simulators present a great property in qualitative analysis regarding the differentiation of structures and subjective evaluations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used the specific example of 3D printing with acrylonitrile butadiene styrene (ABS) as a means to investigate the potential usefulness of benchtop rapid prototyping as a technique for producing patient specific phantoms for radiotherapy dosimetry. Three small cylinders and one model of a human lung were produced via in-house 3D printing with ABS, using 90%, 50%, 30% and 10% ABS infill densities. These phantom samples were evaluated in terms of their geometric accuracy, tissue equivalence and radiation hardness, when irradiated using a range of clinical radiotherapy beams. The measured dimensions of the small cylindrical phantoms all matched their planned dimensions, within 1mm. The lung phantom was less accurately matched to the lung geometry on which it was based, due to simplifications introduced during the phantom design process. The mass densities, electron densities and linear attenuation coefficients identified using CT data, as well as the results of film measurements made using megavoltage photon and electron beams, indicated that phantoms printed with ABS, using infill densities of 30% or more, are potentially useful as lung- and tissue-equivalent phantoms for patient-specific radiotherapy dosimetry. All cylindrical 3D printed phantom samples were found to be unaffected by prolonged radiation and to accurately match their design specifications. However, care should be taken to avoid oversimplifying anatomical structures when printing more complex phantoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

16-electrode phantoms are developed and studied with a simple instrumentation developed for Electrical Impedance Tomography. An analog instrumentation is developed with a sinusoidal current generator and signal conditioner circuit. Current generator is developed withmodified Howland constant current source fed by a voltage controlled oscillator and the signal conditioner circuit consisting of an instrumentation amplifier and a narrow band pass filter. Electronic hardware is connected to the electrodes through a DIP switch based multiplexer module. Phantoms with different electrode size and position are developed and the EIT forward problem is studied using the forward solver. A low frequency low magnitude sinusoidal current is injected to the surface electrodes surrounding the phantom boundary and the differential potential is measured by a digital multimeter. Comparing measured potential with the simulated data it is intended to reduce the measurement error and an optimum phantom geometry is suggested. Result shows that the common mode electrode reduces the common mode error of the EIT electronics and reduces the error potential in the measured data. Differential potential is reduced up to 67 mV at the voltage electrode pair opposite to the current electrodes. Offset potential is measured and subtracted from the measured data for further correction. It is noticed that the potential data pattern depends on the electrode width and the optimum electrode width is suggested. It is also observed that measured potential becomes acceptable with a 20 mm solution column above and below the electrode array level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A current injection pattern in Electrical Impedance Tomography (EIT) has its own current distribution profile within the domain under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability. Image reconstruction studies with practical phantoms are essential to assess the performance of EIT systems for their validation, calibration and comparison purposes. Impedance imaging of real tissue phantoms with different current injection methods is also essential for better assessment of the biomedical EIT systems. Chicken tissue paste phantoms and chicken tissue block phantoms are developed and the resistivity image reconstruction is studied with different current injection methods. A 16-electrode array is placed inside the phantom tank and the tank is filled with chicken muscle tissue paste or chicken tissue blocks as the background mediums. Chicken fat tissue, chicken bone, air hole and nylon cylinders are used as the inhomogeneity to obtained different phantom configurations. A low magnitude low frequency constant sinusoidal current is injected at the phantom boundary with opposite and neighboring current patterns and the boundary potentials are measured. Resistivity images are reconstructed from the boundary data using EIDORS and the reconstructed images are analyzed with the contrast parameters calculated from their elemental resistivity profiles. Results show that the resistivity profiles of all the phantom domains are successfully reconstructed with a proper background resistivity and high inhomogeneity resistivity for both the current injection methods. Reconstructed images show that, for all the chicken tissue phantoms, the inhomogeneities are suitably reconstructed with both the current injection protocols though the chicken tissue block phantom and opposite method are found more suitable. It is observed that the boundary potentials of the chicken tissue block phantoms are higher than the chicken tissue paste phantom. SNR of the chicken tissue block phantoms are found comparatively more and hence the chicken tissue block phantom is found more suitable for its lower noise performance. The background noise is found less in opposite method for all the phantom configurations which yields the better resistivity images with high PCR and COC and proper IRMean and IRMax neighboring method showed higher noise level for both the chicken tissue paste phantoms and chicken tissue block phantoms with all the inhomogeneities. Opposite method is found more suitable for both the chicken tissue phantoms, and also, chicken tissue block phantoms are found more suitable compared to the chicken tissue paste phantom. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Este documento presenta una teoría de análisis cinemático capaz de unificar posición/orientación describiendo el movimiento de la herramienta de un robot mediante un cuaternión dual que envuelve traslación y rotación. Se desarrolla la cinemática directa de dos robots, uno redundante y otro no redundante a fin de evaluar la validez del método en ambos casos. Por último, se comparan los resultados de dicha teoría con los resultados que ofrece la conocida teoría de las matrices de transformación homogéneas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one’s ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis. Complete occlusion and wall- puncture sealing are both possible depending on the exposure conditions. These results concur with prior clinical observations and may prove useful for planning of a more effective procedure in HIFU treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese pretende contribuir para o estudo e análise dos factores relacionados com as técnicas de aquisição de imagens radiológicas digitais, a qualidade diagnóstica e a gestão da dose de radiação em sistema de radiologia digital. A metodologia encontra-se organizada em duas componentes. A componente observacional, baseada num desenho do estudo de natureza retrospectiva e transversal. Os dados recolhidos a partir de sistemas CR e DR permitiram a avaliação dos parâmetros técnicos de exposição utilizados em radiologia digital, a avaliação da dose absorvida e o índice de exposição no detector. No contexto desta classificação metodológica (retrospectiva e transversal), também foi possível desenvolver estudos da qualidade diagnóstica em sistemas digitais: estudos de observadores a partir de imagens arquivadas no sistema PACS. A componente experimental da tese baseou-se na realização de experiências em fantomas para avaliar a relação entre dose e qualidade de imagem. As experiências efectuadas permitiram caracterizar as propriedades físicas dos sistemas de radiologia digital, através da manipulação das variáveis relacionadas com os parâmetros de exposição e a avaliação da influência destas na dose e na qualidade da imagem. Utilizando um fantoma contrastedetalhe, fantomas antropomórficos e um fantoma de osso animal, foi possível objectivar medidas de quantificação da qualidade diagnóstica e medidas de detectabilidade de objectos. Da investigação efectuada, foi possível salientar algumas conclusões. As medidas quantitativas referentes à performance dos detectores são a base do processo de optimização, permitindo a medição e a determinação dos parâmetros físicos dos sistemas de radiologia digital. Os parâmetros de exposição utilizados na prática clínica mostram que a prática não está em conformidade com o referencial Europeu. Verifica-se a necessidade de avaliar, melhorar e implementar um padrão de referência para o processo de optimização, através de novos referenciais de boa prática ajustados aos sistemas digitais. Os parâmetros de exposição influenciam a dose no paciente, mas a percepção da qualidade de imagem digital não parece afectada com a variação da exposição. Os estudos que se realizaram envolvendo tanto imagens de fantomas como imagens de pacientes mostram que a sobreexposição é um risco potencial em radiologia digital. A avaliação da qualidade diagnóstica das imagens mostrou que com a variação da exposição não se observou degradação substancial da qualidade das imagens quando a redução de dose é efectuada. Propõe-se o estudo e a implementação de novos níveis de referência de diagnóstico ajustados aos sistemas de radiologia digital. Como contributo da tese, é proposto um modelo (STDI) para a optimização de sistemas de radiologia digital.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the assessment of time-shifts (TS) from backscattered ultrasound (BSU) signals when large temperature variations (up to 15 degrees C) were induced in a gel-based phantom. The results showed that during cooling temperature is linear with TS at a rate of approximately 74 ns/degrees C. However during a complete heating/cooling cycle, the relation is highly non-linear. This can be explained by the fact that during cooling the temperature distribution is more uniform. Another problem to report is that TS is very sensitive to external movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well understood that for haptic interaction: free motion performance and closed-loop constrained motion performance have conflicting requirements. The difficulties for both conditions are compounded when increased workspace is required as most solutions result in a reduction of achievable impedance and bandwidth. A method of chaining devices together to increase workspace without adverse effect on performance is described and analysed. The method is then applied to a prototype, colloquially known as 'The Flying Phantom', and shown to provide high-bandwidth, low impedance interaction over the full range of horizontal movement across the front of a human user.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)