997 resultados para Periodic law
Resumo:
The chemistry is a science little adored by students, because it is a modeling science. The study in chemistry needs a little of abstraction to be able to view something that can not being viewed, that is why chemistry uses many models and tools. The periodic table is a tool useful, but complicated to be understood, where many students end up just decorating for a test, and losing interest in class. The use of ludic games is a way to facilitate the teaching-learning process, because a game has rules to be followed, so the student will get involved to the content to be studied in addition to having to respect rules. Therefore, it is needed that teachers make their lectures more attractive for their students. This work has analyzed an alternative method for teaching the periodic table using basic computer resources, in order to propose a ludic game to a different class, seeking to get the students attention in order to facilitate the understanding of the content
Resumo:
The "Anhang" to the first treatise is here first printed from the original manuscript, the last treatise is reprinted from the translation by F. Wreden.
Resumo:
"References" at end of each chapter.
Resumo:
Many papers claim that a Log Periodic Power Law (LPPL) model fitted to financial market bubbles that precede large market falls or 'crashes', contains parameters that are confined within certain ranges. Further, it is claimed that the underlying model is based on influence percolation and a martingale condition. This paper examines these claims and their validity for capturing large price falls in the Hang Seng stock market index over the period 1970 to 2008. The fitted LPPLs have parameter values within the ranges specified post hoc by Johansen and Sornette (2001) for only seven of these 11 crashes. Interestingly, the LPPL fit could have predicted the substantial fall in the Hang Seng index during the recent global downturn. Overall, the mechanism posited as underlying the LPPL model does not do so, and the data used to support the fit of the LPPL model to bubbles does so only partially. © 2013.
Resumo:
This paper presents a guidance approach for aircraft in periodic inspection tasks. The periodic inspection task involves flying to a series of desired fixed points of inspection with specified attitude requirements so that requirements for downward looking sensors, such as cameras, are achieved. We present a solution using a precision guidance law and a bank turn dynamics model. High fidelity simulation studies illustrate the effectiveness of this approach under both ideal (nil-wind) and non-ideal (wind) conditions.
Resumo:
This article reviews the nature and purpose of s 129 of the Property Law Act 1974 (Qld) whose application has given rise to some confusion in the past, particularly where the lessee against whom it is being used is also in breach of the lease at the time of receiving the notice. The article explores the historical origins of the section, firstly in New South Wales where it was enacted in 1930, and attempts to outline modern circumstances where it may be applied or particularly applied in Queensland.
Resumo:
We study the quenching dynamics of a many-body system in one dimension described by a Hamiltonian that has spatial periodicity. Specifically, we consider a spin-1/2 chain with equal xx and yy couplings and subject to a periodically varying magnetic field in the (z) over cap direction or, equivalently, a tight-binding model of spinless fermions with a periodic local chemical potential, having period 2q, where q is a positive integer. For a linear quench of the strength of the magnetic field (or chemical potential) at a rate 1/tau across a quantum critical point, we find that the density of defects thereby produced scales as 1/tau(q/(q+1)), deviating from the 1/root tau scaling that is ubiquitous in a range of systems. We analyze this behavior by mapping the low-energy physics of the system to a set of fermionic two-level systems labeled by the lattice momentum k undergoing a nonlinear quench as well as by performing numerical simulations. We also show that if the magnetic field is a superposition of different periods, the power law depends only on the smallest period for very large values of tau, although it may exhibit a crossover at intermediate values of tau. Finally, for the case where a zz coupling is also present in the spin chain, or equivalently, where interactions are present in the fermionic system, we argue that the power associated with the scaling law depends on a combination of q and the interaction strength.
Resumo:
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.
Resumo:
The paper addresses the rhythmic stabilization of periodic orbits in a wedge billiard with actuated edges. The output feedback strategy, based on the sole measurement of impact times, results from the combination of a stabilizing state feedback control law and a nonlinear deadbeat state estimator. It is shown that the robustness of both the control law and the observer leads to a simple rhythmic controller achieving a large basin of attraction. Copyright © 2005 IFAC.
Resumo:
The interaction between supernova ejecta and circumstellar matter, arising from previous episodes of mass loss, provides us with a means of constraining the progenitors of supernovae. Radio observations of a number of supernovae show quasi-periodic deviations from a strict power-law decline at late times. Although several possibilities have been put forward to explain these modulations, no single explanation has proven to be entirely satisfactory. Here we suggest that Luminous blue variables undergoing S-Doradus type variations give rise to enhanced phases of mass loss that are imprinted on the immediate environment of the exploding star as a series of density enhancements. The variations in mass loss arise from changes in the ionization balance of Fe, the dominant ion that drives the wind. With this idea, we find that both the recurrence timescale of the variability and the amplitude of the modulations are in line with the observations. Our scenario thus provides a natural, single-star explanation for the observed behaviour that is, in fact, expected on theoretical grounds.
Resumo:
The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.
Resumo:
The introduction of the Universal Periodic Review (UPR) mechanism as an innovative component of the new Human Rights Council in 2006 has suffered little academic scrutiny. This is partly because it holds as its objective an improvement in human rights situations on the ground, a goal that is difficult to test amongst so many possible causal factors attributable to law reform and policy change, and partly due to the fact that the mechanism has only completed one full cycle of review. This article seeks to remedy this absence of analysis by examining the experience of the United Kingdom during its first review. In doing so, the article first considers the conception of the UPR, before progressing to examine the procedure and recommendations made to the UK by its peers. Finally, the article considers the five year review of the UPR which occurred as a subset of the Human Rights Council Review in 2011 and the resulting changes to the process modalities.
Resumo:
A 700-year, high-resolution, multivariate ice core record from Dome Summit South (DSS) (66degrees46'S, 112degrees48'E; 1370 m), Law Dome, is used to investigate sea level pressure (SLP) variability in the region of East Antarctica. Empirical orthogonal function (EOF) analysis reveals that the first EOF (LDEOF1) of the combined glaciochemical, oxygen isotope ratio, and accumulation rate record from DSS represents most of the variability in sea salt seen in the record. LDEOF1 is positively correlated (at least 95% confidence level) to instrumental June mean SLP across most of East Antarctica. Over the last 700 years, LDEOF1 levels at Law Dome were the highest during the nineteenth century, suggesting an increase in intensification of winter circulation during this period. The Law Dome DSS oxygen isotope ratio series also indicates that the nineteenth century had the coldest winters of any century in the record. In contrast, LDEOF1 levels were the lowest at Law Dome during the eighteenth century, suggesting a significant shift in the patterns and/or intensity of East Antarctic atmospheric circulation between the eighteenth and the nineteenth centuries. The LDEOF1 sea salt record is characterized by significant decadal-scale variability with a strong 25-year periodic structure.
Resumo:
The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.