914 resultados para Peneira molecular Fe MCM-41


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of mesoporous molecular sieves, MCM-41, which possesses a regular hexagonal array of uniform pore openings, aroused a worldwide resurgence in this field. This is not only because it has brought about a series of novel mesoporous materials with various compositions which may find applications in catalysis, adsorption, and guest-host chemistry, but also it has opened a new avenue for creating zeotype materials. This paper presents a comprehensive overview of recent advances in the field of MCM-41. Beginning with the chemistry of surfactant/silicate solutions, progresses made in design and synthesis, characterization, and physicochemical property evaluation of MCM-41 are enumerated. Proposed formation mechanisms are presented, discussed, and identified. Potential applications are reviewed and projected. More than 100 references are cited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The encapsulation of a rare earth (RE) complex Eu(DBM)(3)phen in modified S1-MCM-41 with 3-aminopropyltriethoxysilane is reported for the first time. The luminescence intensity of the RE complex in the modified Si-MCM-41 is about 9 times as strong as in unmodified Si-MCM-41 and the luminescence of the RE complex in the modified SI-MCM-41 has good color purity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the covalent grafting of 3,4,9,10-perylenediimides (PDI), which are fluorescent dyes with very interesting optical properties, onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. The mesoporous materials were first treated with 3-aminopropyltriethoxysilane (APTES) in anhydrous toluene, generating amine-containing surfaces. The amine-containing materials were then reacted with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCA), generating surface-grafted PDI. Infrared spectra of the materials showed that the reaction with amino groups took place at both anhydride ends of the PTCA molecule, resulting in surface attached diimides. No sign of unreacted anhydride groups were found. The new materials, designated as MCMN2PDI and SBAN(2)PDI, presented absorption and emission spectra corresponding to weakly coupled PDI chromophores, in contrast to the strongly coupled rings usually found in solid PDI samples. The materials showed a red fluorescence, which could be observed by the naked eye under UV irradiation or with a fluorescence microscope. The PDI-modified mesoporous materials showed electrical conductivity when pressed into a pellet. The results presented here show that the new materials are potentially useful in the design of nanowires. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous molecular sieves of MCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work, mesoporous molecular sieves MCM-41 were modified with different rare earth ions (La, Eu e Yb) for the obtaining nanostrutured materials with catalytic properties. The catalysts were synthesized by the hydrothermal method at 100oC for 120 h, presenting, all the samples, in the gel of synthesis molar ratio Si/Ln = 50. The obtained materials after calcination at 500oC for 2 h were characterized by XRD, surface area BET, TG/DTG, FTIR, and hydrothermal stability at 700ºC. The XRD analysis of the catalysts indicated that the materials containing rare earth presented characteristic hexagonal structure of the mesoporous materials of the type MCM-41. The TG curves showed that the decomposition of the structural template occurs in the materials at temperatures lower than 500oC. The samples presented variations as the specific superficial area, average diameter of pores and thickness of the silica wall, as a function of the nature of the rare earth impregnated in the mesoporous material. Hydrotermal stability was evaluated through the exposition of the materials to water vapour at 700°C. The thiophene adsorptions reach a maximum at 80% of conversion and incorporation of the rare earths showed influence in the process. Adsorption capacity followed the sequence: Yb-MCM-41 < La-MCM-41 < Eu-MCM-41 < MCM-41

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanostructured material (NSM) of pure silica MCM-41 molecular sieve was synthesized with tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMABr) as the template under supersonic wave condition. Then NSM of (CH3)(3)Si-MCM-41 was obtained by introducing trimethylsilyl to MCM-41. (CH3)(3)Si-MCM-41 showed the similar TEM and XRD photographs with the normal crystal of MCM-41 and the diameter of the NSM crystallites with a hexagon shape is of about 10-40 nm. The dispersivity of (CH3)(3)Si-MCM-41 prevails over the NSM of MCM-41 as its hydrophobicity. The fluorescent intensity of (CH3)(3)Si-MCM-41 is 3.4 times as that of the MCM-41. The luminescent functional supramolecular nanostructured material was prepared in EtOH, and characterized by TEM, HRTEM, XRD, TG, IR, and elemental analysis. The results showed that the [Eu(Phen)(4)](NO3)(3) had entered into the channels of nanosized mesoporous sieve of (CH3)(3)Si-MCM-41, forming discrete centers of luminescence. The energy transferring of the host to guest, superficial effect of NSM, quanta tunnel effect, and discrete luminescent center result in the fluorescent intensity of the supramolecule enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mesoporous molecular sieves of MCM-41 and AlMCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work the molecular sieves MCM-41 and AlMCM-41 were synthesized by replacing the source of silica conventionally used, for quartz, an alternative and abundant, and the use of waste from the production of diatomaceous earth, an aluminum-silicate, as a source aluminum, due to abundant reserves of diatomaceous earth in the state of Rio Grande do Norte in the city of Ceará-Mirim, with the objective of producing high-value materials that have similar characteristics to traditional commercial catalysts in the market. These materials were synthesized by the method of hydrothermal synthesis at 100 º C for 7 days and subjected to calcination at 500 º C for 2 hours under flow of nitrogen and air. The molecular sieves were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and thermogravimetric analysis (TG), adsorption of N2 (BET and BJH methods), spectroscopy in the infra red (FTIR), microscopy scanning electron (SEM) and transmission electron microscopy (TEM). The analysis indicated that the synthesized materials showed characteristic hexagonal structure of mesopores materials with high specific surface area and sort and narrow distribution of size of pores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mesoporous molecular sieves of MCM-41 and AlMCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work the molecular sieves MCM-41 and AlMCM-41 were synthesized by replacing the source of silica conventionally used, for quartz, an alternative and abundant, and the use of waste from the production of diatomaceous earth, an aluminum-silicate, as a source aluminum, due to abundant reserves of diatomaceous earth in the state of Rio Grande do Norte in the city of Ceará-Mirim, with the objective of producing high-value materials that have similar characteristics to traditional commercial catalysts in the market. These materials were synthesized by the method of hydrothermal synthesis at 100 º C for 7 days and subjected to calcination at 500 º C for 2 hours under flow of nitrogen and air. The molecular sieves were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and thermogravimetric analysis (TG), adsorption of N2 (BET and BJH methods), spectroscopy in the infra red (FTIR), microscopy scanning electron (SEM) and transmission electron microscopy (TEM). The analysis indicated that the synthesized materials showed characteristic hexagonal structure of mesopores materials with high specific surface area and sort and narrow distribution of size of pores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous MCM-41 type silicas containing molybdenum and cobalt have been prepared with pore sizes in the range 30-38 Angstrom and 54-59 Angstrom. Catalytic properties of these materials have been examined with respect to the oxidation of cyclooctene and aniline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rare earth complex Eu(TTA)(3) was successfully encapsulated into MCM-41 mesoporous molecular sieve by the addition of the complex into the sol-gel mixture for the synthesis of MCM-41 mesoporous material under microwave radiation. The as-synthesized MCM-41-hosted Eu(TTA)(3) mesophase was confirmed to possess hexagonally ordered mesostructure and a uniform crystal. size of about 30 nm with XRD and HRTEM techniques. Moreover, the IR spectrum, photoluminescence effect and fluorescence lifetime of the Eu(TTA)(3)/MCM-41 hybrid were also studied. An increase in Stokes' shift and no change in luminescence lifetime were observed to the resultant mesophase in comparison with Eu(TTA)(3) in ethanol solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MCM-41-hosted fluorescein mesophase was prepared by addition of the dye into the sol-gel mixture for the synthesis of MCM-41 mesoporous molecular sieve under microwave radiation. The as-synthesized organo-silica-surfactant material possessed hexagonal mesostructure with short-range symmetry and a uniform nanosize of about 30 nm. Furthermore, fluorescence spectrum, increase in lifetime and lack of aggregation at high concentration were discussed in terms of the effect of the host-guest interaction on these properties. (C) 2001 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supported catalysts, consisting of SiW12 immobilized on hexagonal mesoporous silica (HMS) and its aluminum-substituted derivative (MCM-41) with different loadings and calcination temperatures, have been prepared and characterized by X-ray diffraction, FT-IR and NH3-temperature programmed desorption. It is shown that SiW12 retains the Keggin structure on the mesoporous molecular sieves and no HPA crystal phase is developed, even at SiW12 loadings as high as 50 wt%. In the esterification of acetic acid by n-butanol, supported catalysts exhibit a higher catalytic activity and stability and held some promise of practical application. In addition, experimental results indicate that the loaded amount of SiW12 and the calcination temperatures have a significant influence on the catalytic activity, and the existence of aluminum has also an effect on the properties of supported catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vanadium species in tetrahedral and octahedral coordination in V-MCM-41 molecular sieve are characterized by UV resonance Raman bands at 1070 and 930 cm(-1) respectively.