967 resultados para Pel·lícules fines
Resumo:
Different aspects of the structure-magnetism and morphology-magnetism correlation in the ultrathin limit are studied in epitaxial Fe films grown on MgO(001). In the initial stages of growth the presence of substrate steps, intrinsically higher than an Fe atomic layer, prevent the connection between Fe islands and hence the formation of large volume magnetic regions. This is proposed as an explanation to the superparamagnetic nature of ultrathin Fe films grown on MgO in addition to the usually considered islanded, or Vollmer-Weber, growth. Using this model, we explain the observed transition from superparamagnetism to ferromagnetism for Fe coverages above 3 monolayers (ML). However, even though ferromagnetism and magnetocrystalline anisotropy are observed for 4 ML, complete coverage of the MgO substrate by the Fe ultrathin films only occurs around 6 ML as determined by polar Kerr spectra and simulations that consider different coverage situations. In annealed 3.5 ML Fe films, shape or configurational anisotropy dominates the intrinsic magnetocrystalline anisotropy, due to an annealing induced continuous to islanded morphological transition. A small interface anisotropy in thicker films is observed, probably due to dislocations observed at the Fe¿MgO(001) interface.
Resumo:
The process of hydrogen desorption from amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in a-Si is about 1.15 eV. It is shown that this result is valid for a-Si:H films, too.
Resumo:
The ac electrical response is studied in thin films composed of well-defined nanometric Co particles embedded in an insulating ZrO2 matrix which tends to coat them, preventing the formation of aggregates. In the dielectric regime, ac transport originates from the competition between interparticle capacitive Cp and tunneling Rt channels, the latter being thermally assisted. This competition yields an absorption phenomenon at a characteristic frequency 1/(RtCp), which is observed in the range 1010 000 Hz. In this way, the effective ac properties mimic the universal response of disordered dielectric materials. Temperature and frequency determine the complexity and nature of the ac electrical paths, which have been successfully modeled by an Rt-Cp network.
Resumo:
Step bunching develops in the epitaxy of SrRuO3 on vicinal SrTiO3(001) substrates. We have investigated the formation mechanisms and we show here that step bunching forms by lateral coalescence of wedgelike three-dimensional islands that are nucleated at substrate steps. After coalescence, wedgelike islands become wider and straighter with growth, forming a self-organized network of parallel step bunches with altitudes exceeding 30 unit cells, separated by atomically flat terraces. The formation mechanism of step bunching in SrRuO3, from nucleated islands, radically differs from one-dimensional models used to describe bunching in semiconducting materials. These results illustrate that growth phenomena of complex oxides can be dramatically different to those in semiconducting or metallic systems.
Resumo:
A comparative study of LaxBi1-xMnO3 thin films grown on SrTiO3 substrates is reported. It is shown that these films grow epitaxially in a narrow pressure-temperature range. A detailed structural and compositional characterization of the films is performed within the growth window. The structure and the magnetization of this system are investigated. We find a clear correlation between the magnetization and the unit-cell volume that we ascribe to Bi deficiency and the resultant introduction of a mixed valence on the Mn ions. On these grounds, we show that the reduced magnetization of LaxBi1-xMnO3 thin films compared to the bulk can be explained quantitatively by a simple model, taking into account the deviation from nominal composition and the Goodenough-Kanamori-Anderson rules of magnetic interactions.
Resumo:
The formation of coherently strained three-dimensional (3D) islands on top of the wetting layer in the Stranski-Krastanov mode of growth is considered in a model in 1 + 1 dimensions accounting for the anharmonicity and nonconvexity of the real interatomic forces. It is shown that coherent 3D islands can be expected to form in compressed rather than expanded overlayers beyond a critical lattice misfit. In expanded overlayers the classical Stranski-Krastanov growth is expected to occur because the misfit dislocations can become energetically favored at smaller island sizes. The thermodynamic reason for coherent 3D islanding is incomplete wetting owing to the weaker adhesion of the edge atoms. Monolayer height islands with a critical size appear as necessary precursors of the 3D islands. This explains the experimentally observed narrow size distribution of the 3D islands. The 2D-3D transformation takes place by consecutive rearrangements of mono- to bilayer, bi- to trilayer islands, etc., after the corresponding critical sizes have been exceeded. The rearrangements are initiated by nucleation events, each one needing to overcome a lower energetic barrier than the one before. The model is in good qualitative agreement with available experimental observations.
Resumo:
Electron scattering on a thin layer where the potential depends self-consistently on the wave function has been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped brightening (darkening) appears on the layer causing diffraction of the wave. Thus the spontaneously formed transverse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a beam, splitting in two "beams," single or double traces with suppressed reflection or transmission, etc.
Resumo:
Sharing some closely related themes and a common theoretical orientation based on the governmentality analytic, these are nevertheless two very different contributions to criminological knowledge and theory. The first, The Currency of Justice: Fines and Damages in Consumer Societies (COJ), is a sustained and highly original analysis of that most pervasive yet overlooked feature of modern legal orders; their reliance on monetary sanctions. Crime and Risk (CAR), on the other hand, is a short synoptic overview of the many dimensions and trajectories of risk in contemporary debate and practice, both the practices of crime and the governance of crime. It is one of the first in a new series by Sage, 'Compact Criminology', in which authors survey in little more than a hundred pages some current field of debate. With this small gem, Pat O'Malley has set the bar very high for those who follow. For all its brevity, CAR traverses a massive expanse of research, debates and issues, while also opening up new and challenging questions around the politics of risk and the relationship between criminal risk-taking and the governance of risk and crime. The two books draw together various threads of O'Malley's rich body of work on these issues, and once again demonstrate that he is one of the foremost international scholars of risk inside and outside criminology.
Resumo:
The flocculation and filtration characteristics of typical Indian iron ore fines have been studied using starch as flocculant in the presence of an inorganic electrolyte, namely calcium chloride. The effect of various parameters such as pH, starch and calcium chloride concentrations and pulp density on the settling and filtration rates, turbidity of the supernatant and on residual starch and calcium ion concentrates has been investigated through a statistical design and analysis approach and subsequently optimised on a laboratory scale. The adsorption mechanisms of starch onto haematite have been elucidated through adsorption density measurements, infrared and X-ray photoelectron spectroscopic techniques. The rheological property of the polymer solutions of relevance to flocculations has also been investigated. Further, the role of metal ion-starch interactions in the bulk solution, has been studied. In order to understand the nature of polymer adsorption at the double-layer, electrokinetic studies have been carried out with the iron ore mineral samples using starch and calcium chloride. Based on the above findings, selective floculaation tests on artificial mixtures of iron ore minerals have been carried out to determine the separation efficiencies from the view point of alumina and silica removal from haematite as well as the control of alumina: silica ratio in Indian iron ores.
Resumo:
It has been well recognized now that the blast furnace aerodynamics can be represented more accurately under the decreasing gas velocity condition. Therefore, gas-fines study has been carried out in a packed bed under the decreasing gas velocity condition. Gas and fines flow equations have been developed and solved, for two-dimensional case using finite volume method. To take into account the turbulence, k-e turbulent flow model has also been developed in two-dimension. The model's predictions have been validated against the published experimental data for the increasing gas velocity case, as no experimental data are available in open literature for the decreasing gas velocity. This study shows the difference in the results for increasing and decreasing gas velocity cases under various conditions which have been reported here. Implication of the results to the blast furnace condition has also been discussed.