523 resultados para Peel
Resumo:
Mechanical damages such as bruising, collision and impact during food processing stages diminish quality and quantity of productions as well as efficiency of operations. Studying mechanical characteristics of food materials will help to enhance current industrial practices. Mechanical properties of fruits and vegetables describe how these materials behave under loading in real industrial operations. Optimizing and designing more efficient equipments require accurate and precise information of tissue behaviours. FE modelling of food industrial processes is an effective method of studying interrelation of variables during mechanical operation. In this study, empirical investigation has been done on mechanical properties of pumpkin peel. The test was a part of FE modelling and simulation of mechanical peeling stage of tough skinned vegetables. The compression test has been conducted on Jap variety of pumpkin. Additionally, stress strain curve, bio-yield and toughness of pumpkin skin have been calculated. The required energy for reaching bio-yield point was 493.75, 507.71 and 451.71 N.mm for 1.25, 10 and 20 mm/min loading speed respectively. Average value of force in bio-yield point for pumpkin peel was 310 N.
Resumo:
“There it went!—Our last little bit of capital, our going back to civilization money . . .” So Charmian Clift fretted when she watched her husband George Johnson hand over a large number of drachma notes to buy a house on the Greek Island of Hydra in 1956. Whereas today’s expatriates fly back and forth between home and away with ease, Clift’s commitment to Hydra meant that a return to Australia, “to civilization”, would always be difficult and perhaps impossible...
Resumo:
In South and Southeast Asia, postharvest loss causes material waste of up to 66% in fruits and vegetables, 30% in oilseeds and pulses, and 49% in roots and tubers. The efficiency of postharvest equipment directly affects industrial-scale food production. To enhance current processing methods and devices, it is essential to analyze the responses of food materials under loading operations. Food materials undergo different types of mechanical loading during postharvest and processing stages. Therefore, it is important to determine the properties of these materials under different types of loads, such as tensile, compression, and indentation. This study presents a comprehensive analysis of the available literature on the tensile properties of different food samples. The aim of this review was to categorize the available methods of tensile testing for agricultural crops and food materials to investigate an appropriate sample size and tensile test method. The results were then applied to perform tensile tests on pumpkin flesh and peel samples, in particular on arc-sided samples at a constant loading rate of 20 mm min-1. The results showed the maximum tensile stress of pumpkin flesh and peel samples to be 0.535 and 1.45 MPa, respectively. The elastic modulus of the flesh and peel samples was 6.82 and 25.2 MPa, respectively, while the failure modulus values were 14.51 and 30.88 MPa, respectively. The results of the tensile tests were also used to develop a finite element model of mechanical peeling of tough-skinned vegetables. However, to study the effects of deformation rate, moisture content, and texture of the tissue on the tensile responses of food materials, more investigation needs to be done in the future.
Resumo:
Enhancing quality of food products and reducing volume of waste during mechanical operations of food industry requires a comprehensive knowledge of material response under loadings. While research has focused on mechanical response of food material, the volume of waste after harvesting and during processing stages is still considerably high in both developing and developed countries. This research aims to develop and evaluate a constitutive model of mechanical response of tough skinned vegetables under postharvest and processing operations. The model focuses on both tensile and compressive properties of pumpkin flesh and peel tissues where the behaviours of these tissues vary depending on various factors such as rheological response and cellular structure. Both elastic and plastic response of tissue were considered in the modelling process and finite elasticity combined with pseudo elasticity theory was applied to generate the model. The outcomes were then validated using the published results of experimental work on pumpkin flesh and peel under uniaxial tensile and compression. The constitutive coefficients for peel under tensile test was α = 25.66 and β = −18.48 Mpa and for flesh α = −5.29 and β = 5.27 Mpa. under compression the constitutive coefficients were α = 4.74 and β = −1.71 Mpa for peel and α = 0.76 and β = −1.86 Mpa for flesh samples. Constitutive curves predicted the values of force precisely and close to the experimental values. The curves were fit for whole stress versus strain curve as well as a section of curve up to bio yield point. The modelling outputs had presented good agreement with the empirical values and the constructive curves exhibited a very similar pattern to the experimental curves. The presented constitutive model can be applied next to other agricultural materials under loading in future.
Resumo:
Mature green mango fruits of commercially important varieties were screened to investigate the levels of constitutive antifungal compounds in peel and to assess anthracnose disease after inoculation with Colletotrichum gloeosporioides. High pressure liquid chromatography was used to quantify the levels of 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol in the peel extracts. The fruit peel of the varieties ‘Kensington Pride’ and ‘Keitt’ were observed to have the highest levels of both 5-n-heptadecenylresorcinol (107.3-123.7 and 49.9-61.4 μg/g FW, respectively) and 5-n-pentadecylresorcinol (6.32-7.99 and 3.30-6.05 μg/g FW, respectively), and the fruit of the two varieties were found to have some resistance to postharvest anthracnose. The varieties ‘Kent’, ‘R2E2’, ‘Nam Doc Mai’, ‘Calypso’, and ‘Honey Gold’ contained much lower concentrations of resorcinols in their peel and three of these varieties were found to be more susceptible to anthracnose. Concentrations of 5-nheptadecenylresorcinol were significantly lower at the ‘sprung’ and ‘eating ripe’ stages of ripening compared to levels at harvest. Concentrations of 5-n-pentadecylresorcinol did not differ significantly across the three stages of ripening. The levels of these two resorcinols were found to be strongly inter-correlated (P < 0.001, r2 = 0.71), with concentrations of 5-nheptadecenylresorcinol being an average 18 times higher than those of 5-npentadecylresorcinol. At the ‘eating ripe’ stage, significant relationships were observed between the concentrations of each type of alk(en)ylresorcinol and anthracnose lesion areas following postharvest inoculation, P<0.001, r2= 0.69 for 5-n pentadecylresorcinol, and P<0.001, r2= 0.44 for 5-n-heptadecenylresorcinol.
Resumo:
Obesity is associated with many chronic disease states, such as diabetes mellitus, coronary disease and certain cancers, including those of the breast and colon. There is a growing body of evidence that links phytochemicals with the inhibition of adipogenesis and protection against obesity. Mangoes (Mangifera indica L.) are tropical fruits that are rich in a diverse array of bioactive phytochemicals. In this study, methanol extracts of peel and flesh from three archetypal mango cultivars; Irwin, Nam Doc Mai and Kensington Pride, were assessed for their effects on a 3T3-L1 pre-adipocyte cell line model of adipogenesis. High content imaging was used to assess: lipid droplets per cell, lipid droplet area per cell, lipid droplet integrated intensity, nuclei count and nuclear area per cell. Mango flesh extracts from the three cultivars did not inhibit adipogenesis; peel extracts from both Irwin and Nam Doc Mai, however, did so with the Nam Doc Mai extract most potent at inhibiting adipogenesis. Peel extract from Kensington Pride promoted adipogenesis. The inhibition of adipogenesis by Irwin (100 mu g mL(-1)) and Nam Doc Mai peel extracts (50 and 100 mu g mL(-1)) was associated with an increase in the average nuclear area per cell; similar effects were seen with resveratrol, suggesting that these extracts may act through pathways similar to resveratrol. These results suggest that differences in the phytochemical composition between mango cultivars may influence their effectiveness in inhibiting adipogenesis, and points to mango fruit peel as a potential source of nutraceuticals.
Resumo:
Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.
Resumo:
Two preformed alk(en)ylresorcinols, 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol, were identified in ‘Kensington Pride’ mango fruit peel. The alk(en)ylresorcinols had antifungal activity against C. gloeosporioides, as determined from thin layer chromatography bioassays. Soil-applied activators of plant defence (Acibenzolar at 150 mg L-1, and soluble potassium silicate at 200 and 1000 mg L-1) did not influence concentrations of 5-n-heptadecenylresorcinol or 5-n-pentadecyl¬resorcinol in mango peel when applied 2 months after fruit set and one month later. Concentrations of both alk(en)ylresorcinols were high 2 months after fruit set but levels declined by 50% within 1 month (2 months before commercial harvest) and did not change significantly from commercial harvest until eating-ripe.
Resumo:
This paper discusses my current research which aims to re-member the site of the Peel Island Lazaret through re-imagining the Teerk Roo Ra forest as a series of animated artworks. Teerk Roo Ra National Park (formally known as Peel Island) is a small island in Moreton Bay, Queensland and is visible on the ferry journey from Cleveland to Stradbroke Island. The island has an intriguing history, and is the site of a former Lazaret and quarantine station. The Lazaret treated patients diagnosed with Hansen’s disease (or Leprosy), and operated between 1907 and 1959. In this paper I will discuss conceptions of the non-indigenous historical context of the Peel Island Lazaret and the notion of the liminal state (Turner,1967). Through this discussion conceptions of place from Australian cultural theorist Ross Gibson are also examined. The concept of two overlapping realms is then explored through the clues and shared stories about the people who inhabited the site. There is then an explanation of my own approach to re-member this place through re-imagining the forest that witnessed the events of the Lazaret. I then draw on theories of the uncanny from German Psychiatrist Ernst Jentsch, Austrian Neurologist Sigmund Freud and South African animation theorist Meg Rickards to argue that my experience of the forest of Teerk Roo Ra was an uncanny experience where two worlds or states of mind existed simultaneously and overlapped, causing a viscerally unsettling uncanny experience. Through an analysis of Czech Surrealist Animator Jan Švankmajer’s cinematic narrative Down to the cellar (1982), my creative work Structure #24(2011), and Australian Artist Patricia Piccinini’s cinematic artwork The Gathering (2007), I discuss the situation of the inanimate and the animate co-existing simultaneously. Using this approach I propose an understanding of the uncanny as an intellectual uncertainty as outlined by Jentsch (1906). I also develop the notion of the familiar being concealed and becoming unfamiliar through mimicry (Freud, 1919). These discussions form an introduction to my creative work Nocturne #5(2014) which re-members the forests of Teerk Roo Ra as an uncanny place primarily expressed through animation.
Resumo:
This practice-led research project harnesses the plasmatic nature of animation (Eisenstein 1989) to embody the in-between state of being of the Peel Island Lazaret on the island of Teerk Roo Ra in Moreton Bay, Queensland. In this project the genius loci of this place is expressed through the development of a series of creative works that employs the unique transformative quality of animation to push and pull at the boundary lines between what can be apprehended as the ‘real’ and the ‘imaginary’. Drawing on the physical approach of Czech surrealist animator Jan Švankmajer and cultural theories from Australian writer Ross Gibson, this study re-members and re-imagines the site of the Lazaret as a liminal, uncanny place. This study investigates how conceptions of place are overlaid by aspects of history, memory and the imagination and these discoveries contribute to the currently limited academic discourse around place and place-making in animation practice in Australia.
Resumo:
We investigate the influence of viscoelastic nature of the adhesive on the intermittent peel front dynamics by extending a recently introduced model for peeling of an adhesive tape. As time and rate-dependent deformation of the adhesives are measured in stationary conditions, a crucial step in incorporating the viscoelastic effects applicable to unstable intermittent peel dynamics is the introduction of a dynamization scheme that eliminates the explicit time dependence in terms of dynamical variables. We find contrasting influences of viscoelastic contribution in different regions of tape mass, roller inertia, and pull velocity. As the model acoustic energy dissipated depends on the nature of the peel front and its dynamical evolution, the combined effect of the roller inertia and pull velocity makes the acoustic energy noisier for small tape mass and low-pull velocity while it is burstlike for low-tape mass, intermediate values of the roller inertia and high-pull velocity. The changes are quantified by calculating the largest Lyapunov exponent and analyzing the statistical distributions of the amplitudes and durations of the model acoustic energy signals. Both single and two stage power-law distributions are observed. Scaling relations between the exponents are derived which show that the exponents corresponding to large values of event sizes and durations are completely determined by those for small values. Th scaling relations are found to be satisfied in all cases studied. Interestingly, we find only five types of model acoustic emission signals among multitude of possibilities of the peel front configurations.
Resumo:
Peel test measurements and simulations of the interfacial mechanical parameters for the Al/Epoxy/Al2O3 system are performed in the present investigation. A series of Al film thicknesses between 20 and 250 microns and three peel angles of 90, 135 and 180 degrees are considered. Two types of epoxy adhesives are adopted to obtain both strong and weak interface adhesions. A finite element model with cohesive zone elements is used to identify the interfacial parameters and simulate the peel test process. By simulating and recording normal stress near the crack tip, the separation strength is obtained. Furthermore, the cohesive energy is identified by comparing the simulated steady-state peel force and the experimental result. It is found from the research that both the cohesive energy and the separation strength can be taken as the intrinsic interfacial parameters which are dependent on the thickness of the adhesive layer and independent of the film thickness and peel angle.
Resumo:
Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.