660 resultados para Pectic polysaccharides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent of in vitro formation of the borate-dimeric-rhamnogalacturonan II (RG-II) complex was stimulated by Ca2+. The complex formed in the presence of Ca2+ was more stable than that without Ca2+. A naturally occurring boron (B)-RG-II complex isolated from radish (Raphanus sativus L. cv Aokubi-daikon) root contained equimolar amounts of Ca2+ and B. Removal of the Ca2+ by trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid induced cleavage of the complex into monomeric RG-II. These data suggest that Ca2+ is a normal component of the B-RG-II complex. Washing the crude cell walls of radish roots with a 1.5% (w/v) sodium dodecyl sulfate solution, pH 6.5, released 98% of the tissue Ca2+ but only 13% of the B and 22% of the pectic polysaccharides. The remaining Ca2+ was associated with RG-II. Extraction of the sodium dodecyl sulfate-washed cell walls with 50 mm trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid, pH 6.5, removed the remaining Ca2+, 78% of B, and 49% of pectic polysaccharides. These results suggest that not only Ca2+ but also borate and Ca2+ cross-linking in the RG-II region retain so-called chelator-soluble pectic polysaccharides in cell walls.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dialypetalanthus fuscescens is an Amazonian endemic species with problematic taxonomic position. This neotropical rainforest tree belongs to the monospecific Dialypetalanthaceae. In the present work, we analysed the leaf cell-wall polysaccharide composition of Dialypetalanthus fuscescens and compared it to that of Bathysa meridionalis (Rubiaceae-Cinchonoideae). Glycosyl composition and glycosyl-linkage analysis indicated that both species have similar cell wall composition. Arabinogalactans were the major component of the pectic polysaccharides and xylans, although being reported in minor amounts in dicots, were found to be the predominant hemicellulosic polysaccharide in cell walls of both species. These findings are in agreement with previous data on cell wall composition reported for Rubiaceae and corroborate the current suggestion of the possible link between this family and Dialypetalanthaceae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An extracellular polygalacturonase (PG) produced from Paecilomyces variotii was purified to homogeneity through two chromatography steps using DEAE-Fractogel and Sephadex G-100. The molecular weight of P. variotii PG was 77,300 Da by gel filtration and SDS-PAGE. PG had isoelectric point of 4.37 and optimum pH 4.0. PG was very stable from pH 3.0 to 6.0. The extent of hydrolysis of different pectins by the purified enzyme was decreased with an increase in the degree of esterification. PG had no activity toward non-pectic polysaccharides. The apparent K (m) and V (max) values for hydrolyzing sodium polypectate were 1.84 mg/mL and 432 A mu mol/min/mg, respectively. PG was found to have temperature optimum at 65 A degrees C and was totally stable at 45 A degrees C for 90 min. Half-life at 55 A degrees C was 50.6 min. Almost all the examined metal cations showed partial inhibitory effects under enzymatic activity, except for Na(+1), K(+1), and Co(+2) (1 mM) and Cu(+2) (1 and 10 mM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Types and content of carbohydrates were evaluated by chemical (spectrophotometric assay) and physicochemical (Thin Layer Chromatography - TLC and High Performance Liquid Chromatography - HPLC) methods in some Opuntia ficus-indica varieties according to age and season. The samples comprised four varieties of palm (giant, copena F1, clone 20, and round palm). The results demonstrated that the four varieties of palm contain a good quantity of neutral and acid sugars in both summer and winter seasons. However, samples collected in the summer presented a higher content of carbohydrates specially glucose, fructose, galactose, xylose, and arabinose. The tertiary cladode (old cladode) presented almost the double content of sugar found in the quaternary cladodes (young cladodes). Pectic polysaccharides were sequentially extracted with water at 60 ºC, and EDTA at 60 ºC solution resulting in Water-Soluble Pectin (WSP) and a Chelating-Soluble Pectin (CSP) respectively. Galacturonic acid was detected in the fractions WSP and CSP. However, the fraction CSP presented the highest content of sugar acid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pectinases are a big group of enzymes that break down pectic polysaccharides of plant tissues into simpler molecules like galacturonic acids. It has long been used to increase yields and clarity of fruit juices. Since pectic substances are a very complex macromolecule group, various pectinolytic enzymes are required to degrade it completely. These enzymes present differences in their cleavage mode and specificity being basically classified into two main groups that act on pectin smooth regions or on pectin hairy regions. Pectinases are one of the most widely distributed enzymes in bacteria, fungi and plants. This review describes the pectinolytic enzymes and their substrates, the microbial pectinase production and characterization, and the industrial application of these enzymes. © Pedrolli et al.; Licensee Bentham Open.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell walls were isolated from the mesocarp of grape (Vitis vinifera L.) berries at developmental stages from before veraison through to the final ripe berry. Fluorescence and light microscopy of intact berries revealed no measurable change in cell wall thickness as the mesocarp cells expanded in the ripening fruit. Isolated walls were analyzed for their protein contents and amino acid compositions, and for changes in the composition and solubility of constituent polysaccharides during development. Increases in protein content after veraison were accompanied by an approximate 3-fold increase in hydroxyproline content. The type I arabinogalactan content of the pectic polysaccharides decreased from approximately 20 mol % of total wall polysaccharides to about 4 mol % of wall polysaccharides during berry development. Galacturonan content increased from 26 to 41 mol % of wall polysaccharides, and the galacturonan appeared to become more soluble as ripening progressed. After an initial decrease in the degree of esterification of pectic polysaccharides, no further changes were observed nor were there large variations in cellulose (30–35 mol % of wall polysaccharides) or xyloglucan (approximately 10 mol % of wall polysaccharides) contents. Overall, the results indicate that no major changes in cell wall polysaccharide composition occurred during softening of ripening grape berries, but that significant modification of specific polysaccharide components were observed, together with large changes in protein composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A membrane preparation from tobacco (Nicotiana tabacum L.) cells contains at least one enzyme that is capable of transferring the methyl group from S-adenosyl-methionine (SAM) to the C6 carboxyl of homogalacturonan present in the membranes. This enzyme is named homogalacturonan-methyltransferase (HGA-MT) to distinguish it from methyltransferases that catalyze methyletherification of the pectic polysaccharides rhamnogalacturonan I or rhamnogalacturonan II. A trichloroacetic acid precipitation assay was used to measure HGA-MT activity, because published procedures to recover pectic polysaccharides via ethanol or chloroform:methanol precipitation lead to high and variable background radioactivity in the product pellet. Attempts to reduce the incorporation of the 14C-methyl group from SAM into pectin by the addition of the alternative methyl donor 5-methyltetrahydrofolate were unsuccessful, supporting the role of SAM as the authentic methyl donor for HGA-MT. The pH optimum for HGA-MT in membranes was 7.8, the apparent Michaelis constant for SAM was 38 μm, and the maximum initial velocity was 0.81 pkat mg−1 protein. At least 59% of the radiolabeled product was judged to be methylesterified homogalacturonan, based on the release of radioactivity from the product after a mild base treatment and via enzymatic hydrolysis by a purified pectin methylesterase. The released radioactivity eluted with a retention time identical to that of methanol upon fractionation over an organic acid column. Cleavage of the radiolabeled product by endopolygalacturonase into fragments that migrated as small oligomers of HGA during thin-layer chromatography, and the fact that HGA-MT activity in the membranes is stimulated by uridine 5′-diphosphate galacturonic acid, a substrate for HGA synthesis, confirms that the bulk of the product recovered from tobacco membranes incubated with SAM is methylesterified HGA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A qualidade dos produtos alimentares e a sua influência sobre a nutrição e a saúde humana tem vindo a merecer um lugar de destaque na comunidade científica. O conceito de alimento funcional tem adquirido grande importância hoje em dia, em particular os alimentos com compostos bioactivos. O Cardo (Cynara cardunculus L.) é uma planta herbácea originária da região mediterrânea usada essencialmente na coagulação do leite, e por muitos considerada um medicamento popular, devido aos seus efeitos terapêuticos. Este trabalho teve como objectivo estudar o efeito de diferentes condições de secagem da flor de cardo, na composição em ácidos fenólicos, bem como em polissacarídeos. Era ainda objectivo tentar identificar possíveis compostos que pudessem ser utilizados como marcadores de autenticidade do queijo da serra. Neste trabalho foi usada uma amostra de flor de cardo liofilizado e três amostras secadas, a diferentes temperaturas (40, 50 e 60ºC). A análise do resíduo sólido da flor do cardo, por cromatografia gasosa, permitiu identificar a presença de açúcares constituintes de polissacarídeos pécticos. A análise por HPLC, dos extratos metanólicos e cetónicos, revelaram a presença de ácidos hidroxibenzóicos e hidroxicinâmicos na flor do cardo. A amostra mais rica nestes compostos foi a amostra secada a 50ºC. O aumento da temperatura de secagem originou uma diminuição de ácidos fenólicos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T1ρ decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrients composition, phenolic compounds, antioxidant activity and estimated glycemic index (EGI) were evaluated in sorghum bran (SB) and decorticated sorghum flour (DSF), obtained by a rice-polisher, as well as whole sorghum flour (WSF). Correlation between EGI and the studied parameters were determined. SB presented the highest protein, lipid, ash, β-glucan, total and insoluble dietary fiber contents; and the lowest non-resistant and total starch contents. The highest carbohydrate and resistant starch contents were in DSF and WSF, respectively. Phenolic compounds and antioxidant activities were concentrated in SB. The EGI values were: DSF 84.5±0.41; WSF 77.2±0.33; and SB 60.3±0.78. Phenolic compounds, specific flavonoids and antioxidant activities, as well as total, insoluble and soluble dietary fiber and β-glucans of sorghum flour samples were all negatively correlated to EGI. RS content was not correlated to EGI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions. Results: Vascular bundles were more abundant in the rind, whereas parenchyma cells predominated in the pith region. UV measurements of untreated fiber cell walls gave absorbance spectra typical of grass lignin, with a band at 278 nm and a pronounced shoulder at 315 nm, assigned to the presence of hydroxycinnamic acids linked to lignin and/or to arabino-methylglucurono-xylans. The cell walls of vessels had the highest level of lignification, followed by those of fibers and parenchyma. Pith parenchyma cell walls were characterized by very low absorbance values at 278 nm; however, a distinct peak at 315 nm indicated that pith parenchyma cells are not extensively lignified, but contain significant amounts of hydroxycinnamic acids. Cellular UV image profiles scanned with an absorbance intensity maximum of 278 nm identified the pattern of lignin distribution in the individual cell walls, with the highest concentration occurring in the middle lamella and cell corners. Chlorite treatment caused a rapid removal of hydroxycinnamic acids from parenchyma cell walls, whereas the thicker fiber cell walls were delignified only after a long treatment duration (4 hours). Untreated pith samples were promptly hydrolyzed by cellulases, reaching 63% of cellulose conversion after 72 hours of hydrolysis, whereas untreated rind samples achieved only 20% hydrolyzation. Conclusion: The low recalcitrance of pith cells correlated with the low UV-absorbance values seen in parenchyma cells. Chlorite treatment of pith cells did not enhance cellulose conversion. By contrast, application of the same treatment to rind cells led to significant removal of hydroxycinnamic acids and lignin, resulting in marked enhancement of cellulose conversion by cellulases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes an investigation concerning the acetylation of celluloses extracted from short-life-cycle plant sources (i.e. sugarcane bagasse and sisal fiber) as well as microcrystalline cellulose. The acetylation was carried out under homogeneous conditions using the solvent system N,N-dimethylacetamide/lithium chloride. The celluloses were characterized, and the characterizations included an evaluation of the amount of hemicellulose present in the materials obtained from lignocellulosics sources (sugarcane and sisal). The amount of LiCl was varied and its influence on the degree of acetate substitution was analyzed. It was found that the solvent system composition and the nature of the cellulose influenced both the state of chain dissolution and the product characteristics. The obtained results demonstrated the importance of developing specific studies on the dissolution process as well as on the derivatization of celluloses from various sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The storage of Carioca bean at 30 C and 75% relative humidity for eight months altered the solubilization pattern of hulls non-starch polysaccharides The polysaccharide physicochemical pattern changed resulting in a shift in the composition of water-soluble and water-insoluble polysaccharides caused by the insolubilization of galacturonans and xyloglucan Hulls make up 10% of whole beans which showed an increase of about 5% in water-insoluble polysaccharides and a decrease of about 1% in water-soluble polysaccharides with aging These values suggest that cotyledons and hulls together account for an increase of about 2 g of water-insoluble polysaccharides and a decrease of 1 5 g of water-soluble polysaccharides per 100 g of beans This change in the polysaccharide composition may produce a considerable difference in the dietary fiber profile The alterations observed in bean hull non-starch polysaccharide composition were similar to those previously observed in the cotyledon (C) 2010 Elsevier Ltd All rights reserved