27 resultados para PbO2
Resumo:
The electrochemical performance of electrodeposited Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes was galvanostatically evaluated (batch mode, 50 mA cm-2) to degrade the Direct Yellow 86 dye (100 or 200 mg L-1 in 0.1 mol L-1 Na2SO4 + 1.5 g L-1 NaCl), investigating the effect of pH and temperature. Similar results were obtained for both electrodes and the best conditions for removal of color and chemical oxygen demand are pH 7 and 40 °C, when 90% decolorization is attained by passing a charge of only ~0.13 A h L-1 and total mineralization is achieved with expenditure of ~5 kW h m-3.
Resumo:
PbO2 films were electroformed onto carbon cloth substrates (twill woven type) in acid conditions using the nitrate precursor by changing the electrodeposition current density, temperature and pH, in order to optimize the formation of the β-PbO2 phase. The crystal structure and morphology of the PbO2 films were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM) techniques. The optimum conditions obtained for formation of the β-PbO2 were presented and discussed.
Resumo:
The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.
Resumo:
The electrochemical oxidation of lambdacyhalotrin in a triton X-100 water solution on a PbO2-Bi electrode has been studied. It was discovered that electrocatalytic degradation proceeded through the Langmuir-Hinshelwood (L-H) mechanism. The Langmuir adsorption equilibrium constant of the organic compound on the PbO2-Bi surface (0.67 (±0.02) mg-1L) and the L-H maximum reaction rate for lambdacyhalotrin oxidation (0.040 (±0.002) mg L-1 min-1) was also determined on the basis of kinetic data. Oxidation/mineralization was tested at electrode potential higher than 2.3 V vs. Ag/AgCl, in this conditions the higher degradation percent of 85 (±4) % has been obtained.
Resumo:
A aplicação de um eletrodo sensível a íons H3O+, obtido pelo recobrimento de um eletrodo de grafite com uma membrana polimérica contendo PbO2 incorporado em uma matriz de PVC (PbO2-PVC), como eletrodo indicador em titulações coulométricas de neutralização, foi investigada. As leituras dos potenciais foram feitas usando o eletrodo indicador de PbO2-PVC e para comparação dos resultados foi usado um eletrodo de vidro combinado (EVC). As curvas de titulação monitoradas com o eletrodo de PbO2-PVC apresentaram características semelhantes àquelas monitoradas com o EVC e os tempos de equivalência obtidos foram concordantes a um nível de confiança de 95%. O eletrodo de PbO2-PVC apresentou resposta linear no intervalo de pH 2 a 12 com inclinação de Nernst de -57,6 ± 0,1 mV/pH (r= 0,9998), sendo o tempo de resposta deste eletrodo bem menor do que aquele obtido com o EVC. O eletrodo de PbO2-PVC é de fácil construção, possui baixo custo e tempo de vida útil superior a 4 meses, equivalente a (pelo menos 1200 determinações por membrana polimérica).
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Introduction: Le glucose est le principal substrat énergétique cérébral. Sa concentration dans le cerveau est étroitement liée à la glycémie. Chez le patient neurolésé, du fait de l'augmentation des besoins énergétiques, les réserves cérébrales de glucose sont limitées. Une glycémie suffisamment élevée paraît nécessaire pour assurer un apport adéquat de glucose au cerveau. Objectifs : Le but de cette étude est de mieux comprendre la relation entre glucose cérébral et glycémie lors de lésion cérébrale en analysant la physiologie cérébrale chez des patients neurolésés. Plus précisément nous investiguerons: La relation entre le glucose cérébral et le glucose systémique et son association avec le pronostic vital, l'association entre la neuroglucopénie et différents paramètres cérébraux tel que l'hypertension intracrânienne (HTIC) ou la dysfonction énergétique et finalement l'effet d'une perfusion de glucose 10% sur le glucose cérébral lors d'état de neuroglucopénie. Méthodologie : Analyse d'une base de données prospective comportant des patients souffrant d'un traumatisme crânio-cérébral (TCC) ou une hémorragie sous- arachnoïdienne (HSA) sévères. Les patients comateux sont monitorés par un dispositif intra-parenchymateux avancé, comprenant un cathéter de microdialyse cérébrale et un capteur de PbO2. Résultats : 34 patients consécutifs (moyenne d'âge 42 ans, moyenne de temps jusqu'au début du monitoring : 1.5 jours ± 1 ; moyenne de la durée maximale du monitoring : 6 jours ± 3) ont été étudiés, 25 patients souffrant d'un TCC et 9 patients avec une HSA. Nous avons obtenu une corrélation individuelle entre le glucose cérébral et la glycémie chez 52.9 % des patients. Lorsque la glycémie est inférieure à 5 mmol/l, on observe plus fréquemment des épisodes de neuroglucopénie en comparaison aux valeurs intermédiaires de glycémie (5 - 9.9 mmol/l). Les épisodes d'HTIC (pression intracrânienne (PIC) > 20 mmHg) sont plus fréquemment associés à des épisodes de neuroglucopénie que lorsque la pression intracrânienne est normale 75 % vs. 35%. La dysfonction énergétique est plus souvent associés à des épisodes de neuroglucopénie que lorsque le LPR est normal: 55% contre 36%. Un coefficient de corrélation entre glucose cérébral et glycémie significativement plus élevé a été obtenu chez les survivants que chez les non-survivants (0.1 [interquartile range 0.02- 0.3] contre 0.32 [0.17-0.61]). Chez les patients neuroglucopéniques ayant une corrélation entre glucose cérébral et glycémie, la perfusion de glucose i.v. fait monter le glucose cérébral jusqu'à l'arrêt de la perfusion. Conclusion : Malgré une étroite relation entre glycémie et glucose cérébral en conditions stables, cette relation peut être altérée par des causes cérébrales chez les patients neurolésés montrant que la diminution de la disponibilité du glucose extracellulaire ne résulte pas uniquement d'une hypoglycémie relative mais également de causes cérébrales tel que l'hypoperfusion, l'HTIC ou la dysfonction énergétique.
Resumo:
This paper proposes an experiment to be performed in both instrumental analysis and experimental physical-chemistry curricular disciplines in order to open options to develop challenging basic research activities. Thus the experimental procedures and the results obtained in the preparation of electrodeposited lead dioxide onto graphite and its evaluation as potentiometric sensor for H3O+ and Pb2+ ions, are presented. The data obtained in acid-base titrations were compared with those of the traditional combination glass electrode at the same conditions. Although a linear sub-Nernstian response to free hydrogen ions was observed for the electrodeposited PbO2 electrode, a good agreement was obtained between them. Working as lead(II) sensing electrode, the PbO2 showed a linear sub-Nernstian behavior at total Pb2+ concentrations ranging from 3,5 x 10-4 to 3,0 x 10-2 mol/L in nitrate media. For the redox couple PbO2/Pb(II) the operational slope converges to the theoretical one, as the acidity of the working solution increases.
Resumo:
Simultaneous electrolytic deposition is proposed for minimization of Cu2+ and Pb2+ interferences on automated determination of Cd2+ by the Malachite Green-iodide reaction. During electrolysis of sample in a cell with two Pt electrodes and a medium adjusted to 5% (v/v) HNO3 + 0.1% (v/v) H2SO4 + 0.5 mol L-1 NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. With 60 s electrolysis time and 0.25 A current, Pb2+ and Cu2+ levels up to 50 and 250 mg L-1 respectively, can be tolerated without interference. With on-line extraction of Cd2+ in anionic resin minicolumn, calibration graph in the 5.00 - 50.0 µg Cd L-1 range is obtained, corresponding to twenty measurements per hour, 0.7 mg Malachite Green and 500 mg KI and 5 mL sample consumed per determination. Results of the determination of Cd in certified reference materials, vegetables and tap water were in agreement with certified values and with those obtained by GFAAS at 95% confidence level. The detection limit is 0.23 µg Cd L-1 and the RSD for typical samples containing 13.0 µg Cd L-1 was 3.85 % (n= 12).
Resumo:
The indigo blue dye is widely used in the textile industry. When discarded, besides polluting the environment, it affects the appearance and transparency of aquatic bodies, causing damage to flora and fauna. The removal of this dye from industrial effluents is difficult due to its resistance towards degradation. This work proposes the recovery of indigo blue by electroflocculation, as a subsidy for the treatment of effluents from the jeans industry.
Resumo:
Conventional stationary lead acid batteries positive tubular plates have a specific capacity of about 120 Ah/kg. This value represents an active material utilization coefficient of 50%. The production of these plates includes some initial processes to generate the active PbO2 from a precursor material. In the present work it will be presented a proper and novel methodology to assemble tubular plates directely with nanometric powder of PbO2 particles. The utilization coefficient of these plates was about 80%, and they were able to endure more than 130 severe duty cycles. This high utilization coefficient is a higly desirable feature for electric vehicles batteries.
Dióxido de chumbo eletrodepositado sobre grafite como sensor potenciométrico à ions chumbo e sulfato
Resumo:
No presente trabalho, foi desenvolvido um eletrodo de PbO2 eletrodepositado sobre grafite a partir do eletrólito metanosulfonato de chumbo-ácido metanosulfônico contendo o agente tensoativo brometo de cetiltrimetilamônio (BCTA). Foram avaliadas a resposta potenciométrica do eletrodo de PbO2 como sensor à íons Pb2+ e SO4(2-), em pH e força iônica constante. A aplicação deste eletrodo em titulações potenciométricas de precipitação em meio hidro-etanólico também foi investigada. Os resultados demonstraram que o eletrodo de PbO2 eletrodepositado pode ser utilizado como sensor potenciométrico alternativo à íons Pb(II) apresentando uma linearidade na faixa de concentração de 3,98x10-4 a 3,09x10-2 mol L-1 em meio de íons nitrato com limite de detecção de (4,98 ± 0,11)x10-4 mol L-1. Para íons sulfato o eletrodo de PbO2 não responde diretamente porém, estes íons podem ser dosados indiretamente por titulação potenciométrica com solução padrão de Pb(II), em meio ácido, em uma mistura 1:1 (v/v) de etanol-água, com boa definição dos volumes de equivalência. A repetitividade dos potenciais e dos volumes de equivalência obtidos em amostras de concentração milimolar em sulfato, indicam a viabilidade deste eletrodo na dosagem de íons sulfato.
Resumo:
Interest in water treatment by electrochemical methods has grown in recent years. Electrochemical oxidation has been applied particularly successfully to degrade different organic pollutants and disinfect drinking water. This study summarizes the effectiveness of the electrochemical oxidation technique in inactivating different primary biofilm forming paper mill bacteria as well as sulphide and organic material in pulp and paper mill wastewater in laboratory scale batch experiments. Three different electrodes, borondoped diamond (BDD), mixed metal oxide (MMO) and PbO2, were employed as anodes. The impact on inactivation efficiency of parameters such as current density and initial pH or chloride concentration of synthetic paper machine water was studied. The electrochemical behaviour of the electrodes was investigated by cyclic voltammetry with MMO, BDD and PbO2 electrodes in synthetic paper mill water as also with MMO and stainless steel electrodes with biocides. Some suggestions on the formation of different oxidants and oxidation mechanisms were also presented during the treatment. Aerobic paper mill bacteria species (Deinococcus geothermalis, Pseudoxanthomonas taiwanensis and Meiothermus silvanus) were inactivated effectively (>2 log) at MMO electrodes by current density of 50 mA/cm2 and the time taken three minutes. Increasing current density and initial chloride concentration of paper mill water increased the inactivation rate of Deinococcus geothermalis. The inactivation order of different bacteria species was Meiothermus silvanus > Pseudoxanthomonas taiwanensis > Deinococcus geothermalis. It was observed that inactivation was mainly due to the electrochemically generated chlorine/hypochlorite from chloride present in the water and also residual disinfection by chlorine/hypochlorite occurred. In real paper mill effluent treatment sulphide oxidation was effective with all the different initial concentrations (almost 100% reduction, current density 42.9 mA/cm2) and also anaerobic bacteria inactivation was observed (almost 90% reduction by chloride concentration of 164 mg/L and current density of 42.9 mA/cm2 in five minutes). Organic material removal was not as effective when comparing with other tested techniques, probably due to the relatively low treatment times. Cyclic voltammograms in synthetic paper mill water with stainless steel electrode showed that H2O2 could be degraded to radicals during the cathodic runs. This emphasises strong potential of combined electrochemical treatment with this biocide in bacteria inactivation in paper mill environments.
Resumo:
The development of more selective and sensitive analytical methods is of great importance in different areas of knowledge, covering, for example, food, biotechnological, environmental and pharmaceutical sectors. The study aimed to employ the technique electroanalytical differential pulse voltammetry (DPV) as an innovative and promising alternative for identification and quantification of organic compounds. The organic compounds were investigated in this study oxalic acid (OA) and folic acid (FA). The electrochemical oxidation of oxalic acid has been extensively studied as a model reaction in the boundary between the organic and inorganic electrochemistry. Since the AF, an essential vitamin for cell multiplication in all tissues, which is essential for DNA synthesis. The AF has been investigated using analytical techniques, liquid chromatography and molecular absorption spectrophotometry. The results obtained during the experimental procedure indicated that the process of electrochemical oxidation of oxalic acid is strongly dependent on the nature of the anode material and the oxidation mechanism, which affects their detection. Efficient removal was observed in Ti/PbO2 anodes, graphite, BDD and Pt 90, 85, 80 and 78% respectively. It was also shown that the DPV employing glassy carbon electrode offers a fast, simple, reliable and economical way to determine the AO during the process of electrochemical oxidation. Furthermore, electroanalytical methods are more expensive than commonly used chromatographic analysis and other instrumental methods involving toxic reagents and higher cost. Compared with the classical method of titration and DPV could be a good fit, confidence intervals and detection limits confirming the applicability of electroanalytical technique for monitoring the degradation of oxalic acid. For the study of AF was investigated the electrocatalytic activity of the carbon paste electrode for identification and quantification in pharmaceutical formulations by applying the DPV. The results obtained during the experimental procedure showed an irreversible oxidation peak at 9.1 V characteristic of FA. The carbon paste sensor showed low detection limit of 5.683×10−8 mol L-1 reducing matrix effects. The spectrophotometric analysis showed lower concentrations of HF compared with those obtained by HPLC and DPV. The levels of AF were obtained according to the methodology proposed by the Brazilian Pharmacopoeia. The electroanalytical method (DPV) proposed is cheaper than GC analysis commonly used by the pharmaceutical industry. The results demonstrated the potential of these electroanalytical techniques for future applications in environmental, chemical and biological sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)