921 resultados para Pattern Recognition, Visual
Resumo:
Human object recognition is considered to be largely invariant to translation across the visual field. However, the origin of this invariance to positional changes has remained elusive, since numerous studies found that the ability to discriminate between visual patterns develops in a largely location-specific manner, with only a limited transfer to novel visual field positions. In order to reconcile these contradicting observations, we traced the acquisition of categories of unfamiliar grey-level patterns within an interleaved learning and testing paradigm that involved either the same or different retinal locations. Our results show that position invariance is an emergent property of category learning. Pattern categories acquired over several hours at a fixed location in either the peripheral or central visual field gradually become accessible at new locations without any position-specific feedback. Furthermore, categories of novel patterns presented in the left hemifield are distinctly faster learnt and better generalized to other locations than those learnt in the right hemifield. Our results suggest that during learning initially position-specific representations of categories based on spatial pattern structure become encoded in a relational, position-invariant format. Such representational shifts may provide a generic mechanism to achieve perceptual invariance in object recognition.
Resumo:
This project was funded under the Applied Research Grants Scheme administered by Enterprise Ireland. The project was a partnership between Galway - Mayo Institute of Technology and an industrial company, Tyco/Mallinckrodt Galway. The project aimed to develop a semi - automatic, self - learning pattern recognition system capable of detecting defects on the printed circuits boards such as component vacancy, component misalignment, component orientation, component error, and component weld. The research was conducted in three directions: image acquisition, image filtering/recognition and software development. Image acquisition studied the process of forming and digitizing images and some fundamental aspects regarding the human visual perception. The importance of choosing the right camera and illumination system for a certain type of problem has been highlighted. Probably the most important step towards image recognition is image filtering, The filters are used to correct and enhance images in order to prepare them for recognition. Convolution, histogram equalisation, filters based on Boolean mathematics, noise reduction, edge detection, geometrical filters, cross-correlation filters and image compression are some examples of the filters that have been studied and successfully implemented in the software application. The software application developed during the research is customized in order to meet the requirements of the industrial partner. The application is able to analyze pictures, perform the filtering, build libraries, process images and generate log files. It incorporates most of the filters studied and together with the illumination system and the camera it provides a fully integrated framework able to analyze defects on printed circuit boards.
Resumo:
During a possible loss of coolant accident in BWRs, a large amount of steam will be released from the reactor pressure vessel to the suppression pool. Steam will be condensed into the suppression pool causing dynamic and structural loads to the pool. The formation and break up of bubbles can be measured by visual observation using a suitable pattern recognition algorithm. The aim of this study was to improve the preliminary pattern recognition algorithm, developed by Vesa Tanskanen in his doctoral dissertation, by using MATLAB. Video material from the PPOOLEX test facility, recorded during thermal stratification and mixing experiments, was used as a reference in the development of the algorithm. The developed algorithm consists of two parts: the pattern recognition of the bubbles and the analysis of recognized bubble images. The bubble recognition works well, but some errors will appear due to the complex structure of the pool. The results of the image analysis were reasonable. The volume and the surface area of the bubbles were not evaluated. Chugging frequencies calculated by using FFT fitted well into the results of oscillation frequencies measured in the experiments. The pattern recognition algorithm works in the conditions it is designed for. If the measurement configuration will be changed, some modifications have to be done. Numerous improvements are proposed for the future 3D equipment.
Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data
Resumo:
We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.
Resumo:
Chromoblastomycosis is a chronic skin infection caused by the fungus Fonsecaea pedrosoi. Exploring the reasons underlying the chronic nature of F. pedrosoi infection in a murine model of chromoblastomycosis, we find that chronicity develops due to a lack of pattern recognition receptor (PRR) costimulation. F. pedrosoi was recognized primarily by C-type lectin receptors (CLRs), but not by Toll-like receptors (TLRs), which resulted in the defective induction of proinflammatory cytokines. Inflammatory responses to F. pedrosoi could be reinstated by TLR costimulation, but also required the CLR Mincle and signaling via the Syk/CARD9 pathway. Importantly, exogenously administering TLR ligands helped clear F. pedrosoi infection in vivo. These results demonstrate how a failure in innate recognition can result in chronic infection, highlight the importance of coordinated PRR signaling, and provide proof of the principle that exogenously applied PRR agonists can be used therapeutically.
Resumo:
The intracellular bacterium Legionella pneumophila induces a severe form of pneumonia called Legionnaires diseases, which is characterized by a strong neutrophil (NE) infiltrate to the lungs of infected individuals. Although the participation of pattern recognition receptors, such as Toll-like receptors, was recently demonstrated, there is no information on the role of nod-like receptors (NLRs) for bacterial recognition in vivo and for NE recruitment to the lungs. Here, we employed a murine model of Legionnaires disease to evaluate host and bacterial factors involved in NE recruitment to the mice lungs. We found that L. pneumophila type four secretion system, known as Dot/Icm, was required for NE recruitment as dot/icm mutants fail to trigger NE recruitment in a process independent of bacterial multiplication. By using mice deficient for Nod1, Nod2, and Rip2, we found that these receptors accounted for NE recruitment to the lungs of infected mice. In addition, Rip2-dependent responses were important for cytokine production and bacterial clearance. Collectively, these studies show that Nod1, Nod2, and Rip2 account for generation of innate immune responses in vivo, which are important for NE recruitment and bacterial clearance in a murine model of Legionnaires diseases. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Software for pattern recognition of the larvae of mosquitoes Aedes aegypti and Aedes albopictus, biological vectors of dengue and yellow fever, has been developed. Rapid field identification of larva using a digital camera linked to a laptop computer equipped with this software may greatly help prevention campaigns.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2013
Resumo:
The last ten years of research in the field of innate immunity have been incredibly fertile: the transmembrane Toll-like receptors (TLRs) were discovered as guardians protecting the host against microbial attacks and the emerging pathways characterized in detail. More recently, cytoplasmic sensors were identified, which are capable of detecting not only microbial, but also self molecules. Importantly, while such receptors trigger crucial host responses to microbial insult, over-activity of some of them has been linked to autoinflammatory disorders, hence demonstrating the importance of tightly regulating their actions over time and space. Here, we provide an overview of recent findings covering this area of innate and inflammatory responses that originate from the cytoplasm
Resumo:
The spleen plays a crucial role in the development of immunity to malaria, but the role of pattern recognition receptors (PRRs) in splenic effector cells during malaria infection is poorly understood. In the present study, we analysed the expression of selected PRRs in splenic effector cells from BALB/c mice infected with the lethal and non-lethal Plasmodium yoelii strains 17XL and 17X, respectively, and the non-lethal Plasmodium chabaudi chabaudi AS strain. The results of these experiments showed fewer significant changes in the expression of PRRs in AS-infected mice than in 17X and 17XL-infected mice. Mannose receptor C type 2 (MRC2) expression increased with parasitemia, whereas Toll-like receptors and sialoadhesin (Sn) decreased in mice infected with P. chabaudi AS. In contrast, MRC type 1 (MRC1), MRC2 and EGF-like module containing mucin-like hormone receptor-like sequence 1 (F4/80) expression decreased with parasitemia in mice infected with 17X, whereas MRC1 an MRC2 increased and F4/80 decreased in mice infected with 17XL. Furthermore, macrophage receptor with collagenous structure and CD68 declined rapidly after initial parasitemia. SIGNR1 and Sn expression demonstrated minor variations in the spleens of mice infected with either strain. Notably, macrophage scavenger receptor (Msr1) and dendritic cell-associated C-type lectin 2 expression increased at both the transcript and protein levels in 17XL-infected mice with 50% parasitemia. Furthermore, the increased lethality of 17X infection in Msr1 -/- mice demonstrated a protective role for Msr1. Our results suggest a dual role for these receptors in parasite clearance and protection in 17X infection and lethality in 17XL infection.
Resumo:
Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.
Resumo:
On the basis of MRI examinations in 88 neonates and infants with perinatal asphyxia, we defined 6 different patterns on T2-weighted images: pattern A--scattered hyperintensity of both hemispheres of the telencephalon with blurred border zones between cortex and white matter, indicating diffuse brain injury; pattern B--parasagittal hyperintensity extending into the corona radiata, corresponding to the watershed zones; pattern C--hyper- and hypointense lesions in thalamus and basal ganglia, which relate to haemorrhagic necrosis or iron deposition in these areas; pattern D--periventricular hyperintensity, mainly along the lateral ventricles, i.e. periventricular leukomalacia (PVL), originating from the matrix zone; pattern E--small multifocal lesions varying from hyper--to hypointense, interpreted as necrosis and haemorrhage; pattern F--periventricular centrifugal hypointense stripes in the centrum semiovale and deep white matter of the frontal and occipital lobes. Contrast was effectively inverted on T1-weighted images. Patterns A, B and C were found in 17%, 25% and 37% of patients, and patterns D, E and F in 19%, 17% and 35%, respectively. In 49 patients a combination of patterns was observed, but 30% of the initial images were normal. At follow-up, persistent abnormalities were seen in all children with patterns A and D, but in only 52% of those with pattern C. Myelination was retarded most often in patients with diffuse brain injury and PVL (patterns A and D).
Resumo:
Collage is a pattern-based visual design authoring tool for the creation of collaborative learning scripts computationally modelled with IMS Learning Design (LD). The pattern-based visual approach aims to provide teachers with design ideas that are based on broadly accepted practices. Besides, it seeks hiding the LD notation so that teachers can easily create their own designs. The use of visual representations supports both the understanding of the design ideas and the usability of the authoring tool. This paper presents a multicase study comprising three different cases that evaluate the approach from different perspectives. The first case includes workshops where teachers use Collage. A second case implies the design of a scenario proposed by a third-party using related approaches. The third case analyzes a situation where students follow a design created with Collage. The cross-case analysis provides a global understanding of the possibilities and limitations of the pattern-based visual design approach.