1000 resultados para Particle-hole asymmetry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd1-xCaxMnO3 in hole doped (x = 0.4; NCMOH) and electron doped (x = 0.6; NCMOE) samples. NCMOH in bulk form shows a complex temperature dependence of magnetization M(T), with a charge ordering transition at similar to 250 K, an antiferromagnetic (AFM) transition at similar to 150 K, and a transition to a canted AFM phase/mixed phase at similar to 80 K. Bulk NCMOE behaves quite differently with just a charge ordering transition at similar to 280 K, thus providing a striking example of the so called electron-hole asymmetry. While our magnetization data on bulk samples are consistent with the earlier reports, the new results on the nanoparticles bring out drastic effects of size reduction. They show that M(T) behaviors of the two nanosamples are essentially similar in addition to the absence of the charge order in them thus providing strong evidence for vanishing of the electron-hole asymmetry in nanomanganites. This conclusion is further corroborated by electron paramagnetic resonance studies which show that the large difference in the ``g'' values and their temperature dependences found for the two bulk samples disappears as they approach a common behavior in the corresponding nanosamples. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using in situ Raman scattering from phosphorene channel in an electrochemically top-gated field effect transistor, we show that phonons with A(g) symmetry depend much more strongly on concentration of electrons than that of holes, wheras phonons with B-g symmetry are insensitive to doping. With first-principles theoretical analysis, we show that the observed electon-hole asymmetry arises from the radically different constitution of its conduction and valence bands involving pi and sigma bonding states respectively, whose symmetry permits coupling with only the phonons that preserve the lattice symmetry. Thus, Raman spectroscopy is a non-invasive tool for measuring electron concentration in phosphorene-based nanoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge-transfer (CT) excitations are essential for photovoltaic phenomena in organic solar cells. Owing to the complexity of molecular geometries and orbital coupling, a detailed analysis and spatial visualisation of CT processes can be challenging. In this paper, a new detail-oriented visualisation scheme, the particle-hole map (PHM), is applied and explained for the purpose of spatial analysis of excitations in organic molecules. The PHM can be obtained from the output of a time-dependent density-functional theory calculation with negligible additional computational cost, and provides a useful physical picture for understanding the origins and destinations of electrons and holes during an excitation process. As an example, we consider intramolecular CT excitations in Diketopyrrolopyrrole-based molecules, and relate our findings to experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a numerical renormalization-group study of the thermoelectric effect in the single-electron transistor (SET) and side-coupled geometries. As expected, the computed thermal conductance and thermopower curves show signatures of the Kondo effect and of Fano interference. The thermopower curves are also affected by particle-hole asymmetry. © 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transport properties of the two-dimensional system in HgTe-based quantum wells containing simultaneously electrons and holes of low densities are examined. The Hall resistance, as a function of perpendicular magnetic field, reveals an unconventional behavior, different from the classical N-shaped dependence typical for bipolar systems with electron-hole asymmetry. The quantum features of magnetotransport are explained by means of numerical calculation of the Landau level spectrum based on the Kane Hamiltonian. The origin of the quantum Hall plateau sigma(xy) = 0 near the charge neutrality point is attributed to special features of Landau quantization in our system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The accurate description of ground and electronic excited states is an important and challenging topic in quantum chemistry. The pairing matrix fluctuation, as a counterpart of the density fluctuation, is applied to this topic. From the pairing matrix fluctuation, the exact electron correlation energy as well as two electron addition/removal energies can be extracted. Therefore, both ground state and excited states energies can be obtained and they are in principle exact with a complete knowledge of the pairing matrix fluctuation. In practice, considering the exact pairing matrix fluctuation is unknown, we adopt its simple approximation --- the particle-particle random phase approximation (pp-RPA) --- for ground and excited states calculations. The algorithms for accelerating the pp-RPA calculation, including spin separation, spin adaptation, as well as an iterative Davidson method, are developed. For ground states correlation descriptions, the results obtained from pp-RPA are usually comparable to and can be more accurate than those from traditional particle-hole random phase approximation (ph-RPA). For excited states, the pp-RPA is able to describe double, Rydberg, and charge transfer excitations, which are challenging for conventional time-dependent density functional theory (TDDFT). Although the pp-RPA intrinsically cannot describe those excitations excited from the orbitals below the highest occupied molecular orbital (HOMO), its performances on those single excitations that can be captured are comparable to TDDFT. The pp-RPA for excitation calculation is further applied to challenging diradical problems and is used to unveil the nature of the ground and electronic excited states of higher acenes. The pp-RPA and the corresponding Tamm-Dancoff approximation (pp-TDA) are also applied to conical intersections, an important concept in nonadiabatic dynamics. Their good description of the double-cone feature of conical intersections is in sharp contrast to the failure of TDDFT. All in all, the pairing matrix fluctuation opens up new channel of thinking for quantum chemistry, and the pp-RPA is a promising method in describing ground and electronic excited states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ Raman experiments together with transport measurements have been carried out in single-walled carbon nanotubes as a function of electrochemical top gate voltage (Vg). We have used the green laser (EL=2.41 eV), where the semiconducting nanotubes of diameter ~1.4 nm are in resonance condition. In semiconducting nanotubes, the G−- and G+-mode frequencies increase by ~10 cm−1 for hole doping, the frequency shift of the G− mode is larger compared to the G+ mode at the same gate voltage. However, for electron doping the shifts are much smaller: G− upshifts by only ~2 cm−1 whereas the G+ does not shift. The transport measurements are used to quantify the Fermi-energy shift (EF) as a function of the gate voltage. The electron-hole asymmetry in G− and G+ modes is quantitatively explained using nonadiabatic effects together with lattice relaxation contribution. The electron-phonon coupling matrix elements of transverse-optic (G−) and longitudinal-optic (G+) modes explain why the G− mode is more blueshifted compared to the G+ mode at the same Vg. The D and 2D bands have different doping dependence compared to the G+ and G− bands. There is a large downshift in the frequency of the 2D band (~18 cm−1) and D (~10 cm−1) band for electron doping, whereas the 2D band remains constant for the hole doping but D upshifts by ~8 cm−1. The doping dependence of the overtone of the G bands (2G bands) shows behavior similar to the dependence of the G+ and G− bands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The excitation gaps in the singlet and triplet manifolds for finite Hubbard models in one, two and three dimensions have been obtained using different approximate configuration interaction (CI) schemes, as a function of the correlation strength, by using valence bond (VB) functions constructed over the molecular orbital (MO) basis. These are compared with numerically exact results and it is found that the scheme in which all particle hole excitations below a given threshold are included is the method of choice. The excitation energies are well reproduced, in trend as well as magnitude, particularly when the threshold equals the bandwidth of the corresponding noninteracting system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper is devoted to the connection between integrability of a finite quantum system and degeneracies of its energy levels. In particular, we analyse in detail the energy spectra of finite Hubbard chains. Heilmann and Lieb demonstrated that in these systems there are crossings of levels of the same parameter-independent symmetry. We show that this apparent violation of the Wigner-von Neumann noncrossing rule follows directly from the existence of nontrivial conservation laws and is a characteristic signature of quantum integrability. The energy spectra of Hubbard chains display many instances of permanent (at all values of the coupling) twofold degeneracies that cannot be explained by parameter-independent symmetries. We relate these degeneracies to the different transformation properties of the conserved currents under spatial reflections and the particle-hole transformation and estimate the fraction of doubly degenerate states. We also discuss multiply degenerate eigenstates of the Hubbard Hamiltonian. The wavefunctions of many of these states do not depend on the coupling, which suggests the existence of an additional parameter-independent symmetry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proton-neutron interaction in determining the evolution of nuclear structure has been studied by using the Brillouin-Wigner perturbation expansion. The particle-hole and particle-particle p-n interactions are unifiedly described in the theory. The obtained formulas of level energies and excitation energies scaled in the small- and large-NpNn limits can well explain the linearity of the extracted proton-neutron interaction energies and the attenuation of the 2(1)(+) excitation energies against the valence nucleon product NpNn for five mass regions from A = 100-200.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compute the density-fluctuation spectrum of spherical 4HeN shells adsorbed on the outer surface of Cn fullerenes. The excitation spectrum is obtained within the random-phase approximation, with particle-hole elementary excitations and effective interaction extracted from a density-functional description of the shell structure. The presence of one or two solid helium layers adjacent to the adsorbing fullerene is phenomenologically accounted for. We illustrate our results for a selection of numbers of adsorbed atoms on C20, C60, and C120. The hydrodynamical model that has proven successful to describe helium excitations in the bulk and in restricted geometries permits to perform a rather exhaustive analysis of various fluid spherical systems, namely, spheres, cavities, free bubbles, and bound shells of variable size.