926 resultados para Particle formation process
Resumo:
LINEs are transposable elements, widely distributed among eukaryotes, that move via reverse transcription of an RNA intermediate. Mammalian LINEs have two ORFs (ORF1 and ORF2). The proteins encoded by these ORFs play important roles in the retrotransposition process. Although the predicted amino acid sequence of ORF1 is not closely related to any known proteins, it is highly basic; thus, it has long been hypothesized that ORF1 protein functions to bind LINE-1 (L1) RNA during retrotransposition. Cofractionation of ORF1 protein and L1 RNA in extracts from both mouse and human embryonal carcinoma cells indicated that ORF1 protein binds L1 RNA, forming a ribonucleoprotein particle. Based on UV crosslinking and electrophoretic mobility-shift assays using purified components, we demonstrate here that the ORF1 protein encoded by mouse L1 binds nucleic acids with a strong preference for RNA and other single-stranded nucleic acids. Furthermore, multiple copies of ORF1 protein appear to bind single-stranded nucleic acid in a manner suggesting positive cooperativity; such binding characteristics are likely to be facilitated by the protein–protein interactions detected among molecules of ORF1 polypeptide by coimmunoprecipitation. These observations are consistent with the formation of ribonucleoprotein particles containing L1 RNA and ORF1 protein and provide additional evidence for the role of ORF1 protein during retrotransposition of L1.
Resumo:
The current success of soy foods is driving soy ingredient manufacturers to develop innovative products for food manufacturers. One such innovation is separating the soy proteins glycinin and beta-conglycinin to take advantage of their individual functional and nutritional properties. Precipitation by acidification is a low-cost method for separating these two proteins. Separation is achieved by preferentially precipitating glycinin at pH ~ 6 while beta-conglycinin remains in solution. Understanding the particle formation during protein precipitation is important as it can influence the efficiency of the precipitation process as well as subsequent downstream processes such as the particle-liquid separation step, usually achieved by centrifugation. Most of the previous soy protein precipitation studies are limited to precipitation at pH 4 as this is the pH range most commonly used in the commercial manufacturing of soy protein isolates. To date, there have been no studies on the particle formation during precipitation at pH > 5.Precipitation of soy protein is generally thought to occur by the rapid formation of primary particles in the size range of 0.1 - 0.3 microns followed by aggregation of these particles via collision to aggregates of size about 1 - 50 microns. The formation of the primary particles occurs on a time scale much shorter than that of the overall precipitation process (Nelson and Glatz, 1985). This study shows that precipitation of soy protein is indeed rapid. At high pH levels, binary liquid-liquid separation occurs forming a protein-rich heavy phase. The protein-rich phase appears as droplets which can be coalesced to form a uniform bulk layer under centrifugation forces. Upon lowering the pH level by the addition of acid, further protein is precipitated as amorphous material which binds the droplets together to form aggregates of amorphous precipitates. Liquid-liquid separation has been observed in many protein solutions but this phenomenon has only scarcely been reported in the literature for soy proteins. It presents an exciting opportunity for an innovative product. Features of the liquid-phase protein such as protein yield and purity will be characterized.
Resumo:
The role of middle management is essential when managing integrative and emergent strategy formation processes. We stand out the importance of its role connecting micro and macro organizational level offering a very important contribution when examining the strategy-as-practice perspective and integrative strategy formation process. The main goal of this research is to analyse the relationship between the integrative strategy formation process and the roles of middle management under the strategy-as-practice perspective. To check it out we adopted a qualitative methodology droving a case analysis in a Spanish University. Data was collected by means of personal interviews with members of different levels of the Institution, documents analysis and direct observation. In advance of some results we find out that the University develops an integrative strategy formation process and confers to middle management an important role extended all over the organization.
Resumo:
An efficient approach for organizing large ad hoc networks is to divide the nodesinto multiple clusters and designate, for each cluster, a clusterhead which is responsible forholding intercluster control information. The role of a clusterhead entails rights and duties.On the one hand, it has a dominant position in front of the others because it manages theconnectivity and has access to other node¿s sensitive information. But on the other hand, theclusterhead role also has some associated costs. Hence, in order to prevent malicious nodesfrom taking control of the group in a fraudulent way and avoid selfish attacks from suitablenodes, the clusterhead needs to be elected in a secure way. In this paper we present a novelsolution that guarantees the clusterhead is elected in a cheat-proof manner.
Resumo:
The ordered nano-structured surfaces, like self-assembled monolayers (SAMs) are of a great scientific interest, due to the low cost, simplicity, and versatility of this method. SAMs found numerous of applications in molecular electronics, biochemistry and optical devices. Phthalocyanine (Pc) complexes are of particular interest for the SAM preparation. These molecules exhibit fascinating physical properties and are chemically and thermally stable. Moreover their complex structure is advantageous for the fabrication of switchable surfaces. In this work the adsorption process of Pcs derivatives, namely, subphthalocyanines (SubPcB) and terbium (2TbPc) sandwich complexes on gold has been investigated. The influence of the molecular concentration, chain length of peripheral groups, and temperature on the film formation process has been examined using a number of techniques. The SAMs formation process has been followed in situ and in real time by means of second harmonic generation (SHG) and surface plasmon resonance (SPR) spectroscopy. To investigate the quality of the SAMs prepared at different temperatures atomic force microscopy (AFM) and X-Ray photoelectron spectroscopy (XPS)measurements were performed. Valuable information about SubPcB and 2TbPc adsorbtion process has been obtained in the frame of this work. The kinetic data, obtained with SHG and SPR, shows the best conformance with the first order Langmuir kinetic model. Comparing SHG and SPR results, it has been found, that the film formation occurs faster than the formation of chemical bonds. Such, the maximum amount of molecules on the surface is reached after 6 min for SubPcB and 30 min for 2TbPc. However, at this time the amount of formed chemicals bonds is only 10% and 40% for SubPcB and 2TbPc, respectively. The most intriguing result, among others, was obtained at T = 2 °C, where the formation of the less dense SAMs have been detected with SHG.However, analyzing XPS and AFM data, it has been revealed, that there is the same amount of molecules on the surface at both temperature T = 2 °C, and T = 21 °C, but the amount of formed chemicals bond is different. At T = 2 °C molecules form aggregates, therefore many of available anchor groups stay unattached.
Resumo:
We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus 133 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37 degrees C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed.
Resumo:
The increased concern for the impacts of climate change on the environment, along with the growing industry of renewable energy sources, and especially wind power, has made the valuation of environmental services and goods of great significance. Offshore wind energy is being exploited exponentially and its importance for renewable energy generation is increasing. We apply a double-bound dichotomous Contingent Valuation Method analysis in order to both a) estimating the Willingness to Pay (WTP) of Greek residents for green electricity produced by offshore wind farm located between the islands of Tinos and Andros and b) identifying factors behind respondents’ WTP including individual’s behaviour toward environment and individual’s views on climate change and renewable energy. A total of 141 respondents participated in the questionnaire. Results show that the respondents are willing to pay on average 20€ every two months through their electricity bill in return for carbon-free electricity and water saving from the wind farm. Respondents’ environmental consciousness and their perception towards climate change and renewable energy have a positive effect on their WTP.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
Resumo:
Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.
Resumo:
Events of new particle formation (NPF) in tropical boundary layer followed by consecutive growth towards Aitken mode size range are sparse compared to mid- latitudes Kulmala et al. (2004). This is also the case for rainforest environment. More often short episodes of elevated ultrafine and Aitken mode aerosol particle concentrations are observed their origin and the processes governing these episodes do however remain unclear. Based on observations performed in the Amazonian rainforest environment combined with statistical analysis we present a mechanism explaining the erratic appearance of ultra-fine aerosol in tropical boundary layer of the rainforest.
Resumo:
The nonstructural protein NS2-3 of pestiviruses undergoes tightly regulated processing. For bovine viral diarrhea virus it was shown that uncleaved NS2-3 is required for infectious particle formation while cleaved NS3 is essential for genome replication. To further investigate the functions of NS2-3 and NS4A in the pestivirus life cycle, we established T7 RNA polymerase-dependent trans-complementation for p7-NS2-3-4A of classical swine fever virus (CSFV). Expression of NS2-3 and NS4A in trans restored the production of infectious particles from genomes lacking NS2-3 expression. Co-expression of cleaved NS4A was essential. None of the enzymatic activities harbored by NS2-3 were required for infectious particle formation. Importantly, expression of uncleavable NS2-3 together with NS4A rescued infectious particles from a genome lacking NS2, demonstrating that cleaved NS2 per se has no additional essential function. These data indicate that NS2-3 and NS3, each in association with NS4A, have independent functions in the CSFV life cycle.
Resumo:
We measured condensation particle (CP) concentrations and particle size distributions at the coastal Antarctic station Neumayer (70°39'S, 8°15'W) during two summer campaigns (from 20 January to 26 March 2012 and 1 February to 30 April 2014) and during polar night between 12 August and 27 September 2014 in the particle diameter (Dp) range from 2.94 nm to 60.4 nm (2012) and from 6.26 nm to 212.9 nm (2014). During both summer campaigns we identified all in all 44 new particle formation (NPF) events. From 10 NPF events, particle growth rates could be determined to be around 0.90±0.46 nm/h (mean ± std; range: 0.4 nm/h to 1.9 nm/h). With the exception of one case, particle growth was generally restricted to the nucleation mode (Dp < 25 nm) and the duration of NPF events was typically around 6.0±1.5 h (mean ± std; range: 4 h to 9 h). Thus in the main, particles did not grow up to sizes required for acting as cloud condensation nuclei. NPF during summer usually occurred in the afternoon in coherence with local photochemistry. During winter, two NPF events could be detected, though showing no ascertainable particle growth. A simple estimation indicated that apart from sulfuric acid, the derived growth rates required other low volatile precursor vapours.