802 resultados para Parkinson’s disease - motor deficits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large motor dysfunctions are observed in older adults with the age advance. Parkinson’s disease (PD) patients have motor deficits to perform daily living activities. To raise from a chair, a daily task necessary to live independently, requires both large muscle recruitment and large joint range of motion to achieve the vertical position safely. Normally, we initiate gait after raise from a chair. The aim of this study was to analyze the PD patients’ behavior when rising from a chair and initiating gait and to compare it according to the age advance. In order to do that, 23 PD patients (66.61±7.64 years old) were distributed in three age groups: Young group, between 51 and 60 years of age (n=7); intermediary group, between 61 and 70 years of age (n=7); and elderly group, over 70 years of age (n=9). There were no statistical differences among groups either for the disease evolution stage or for it compromising. The task was to stand from a chair and to initiate gait forward in three attempts. The dependent variables were: spatial and temporal (first step length and duration, and stride length, duration and velocity) and angular (flexion and extension of head, shoulder, hip, knee, and ankle). The motion of standing from a chair was divided in two phases. The data was statistically treated by means of Analyses of Variance with group as the only factor. The Scheffé’s post hoc test was used to localize differences among groups and the significance level was adjusted to p≤0.017. There were statistical differences for stride...(Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To design, develop and set up a web-based system for enabling graphical visualization of upper limb motor performance (ULMP) of Parkinson’s disease (PD) patients to clinicians. Background Sixty-five patients diagnosed with advanced PD have used a test battery, implemented in a touch-screen handheld computer, in their home environment settings over the course of a 3-year clinical study. The test items consisted of objective measures of ULMP through a set of upper limb motor tests (finger to tapping and spiral drawings). For the tapping tests, patients were asked to perform alternate tapping of two buttons as fast and accurate as possible, first using the right hand and then the left hand. The test duration was 20 seconds. For the spiral drawing test, patients traced a pre-drawn Archimedes spiral using the dominant hand, and the test was repeated 3 times per test occasion. In total, the study database consisted of symptom assessments during 10079 test occasions. Methods Visualization of ULMP The web-based system is used by two neurologists for assessing the performance of PD patients during motor tests collected over the course of the said study. The system employs animations, scatter plots and time series graphs to visualize the ULMP of patients to the neurologists. The performance during spiral tests is depicted by animating the three spiral drawings, allowing the neurologists to observe real-time accelerations or hesitations and sharp changes during the actual drawing process. The tapping performance is visualized by displaying different types of graphs. Information presented included distribution of taps over the two buttons, horizontal tap distance vs. time, vertical tap distance vs. time, and tapping reaction time over the test length. Assessments Different scales are utilized by the neurologists to assess the observed impairments. For the spiral drawing performance, the neurologists rated firstly the ‘impairment’ using a 0 (no impairment) – 10 (extremely severe) scale, secondly three kinematic properties: ‘drawing speed’, ‘irregularity’ and ‘hesitation’ using a 0 (normal) – 4 (extremely severe) scale, and thirdly the probable ‘cause’ for the said impairment using 3 choices including Tremor, Bradykinesia/Rigidity and Dyskinesia. For the tapping performance, a 0 (normal) – 4 (extremely severe) scale is used for first rating four tapping properties: ‘tapping speed’, ‘accuracy’, ‘fatigue’, ‘arrhythmia’, and then the ‘global tapping severity’ (GTS). To achieve a common basis for assessment, initially one neurologist (DN) performed preliminary ratings by browsing through the database to collect and rate at least 20 samples of each GTS level and at least 33 samples of each ‘cause’ category. These preliminary ratings were then observed by the two neurologists (DN and PG) to be used as templates for rating of tests afterwards. In another track, the system randomly selected one test occasion per patient and visualized its items, that is tapping and spiral drawings, to the two neurologists. Statistical methods Inter-rater agreements were assessed using weighted Kappa coefficient. The internal consistency of properties of tapping and spiral drawing tests were assessed using Cronbach’s α test. One-way ANOVA test followed by Tukey multiple comparisons test was used to test if mean scores of properties of tapping and spiral drawing tests were different among GTS and ‘cause’ categories, respectively. Results When rating tapping graphs, inter-rater agreements (Kappa) were as follows: GTS (0.61), ‘tapping speed’ (0.89), ‘accuracy’ (0.66), ‘fatigue’ (0.57) and ‘arrhythmia’ (0.33). The poor inter-rater agreement when assessing “arrhythmia” may be as a result of observation of different things in the graphs, among the two raters. When rating animated spirals, both raters had very good agreement when assessing severity of spiral drawings, that is, ‘impairment’ (0.85) and irregularity (0.72). However, there were poor agreements between the two raters when assessing ‘cause’ (0.38) and time-information properties like ‘drawing speed’ (0.25) and ‘hesitation’ (0.21). Tapping properties, that is ‘tapping speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’ had satisfactory internal consistency with a Cronbach’s α coefficient of 0.77. In general, the trends of mean scores of tapping properties worsened with increasing levels of GTS. The mean scores of the four properties were significantly different to each other, only at different levels. In contrast from tapping properties, kinematic properties of spirals, that is ‘drawing speed’, ‘irregularity’ and ‘hesitation’ had a questionable consistency among them with a coefficient of 0.66. Bradykinetic spirals were associated with more impaired speed (mean = 83.7 % worse, P < 0.001) and hesitation (mean = 77.8% worse, P < 0.001), compared to dyskinetic spirals. Both these ‘cause’ categories had similar mean scores of ‘impairment’ and ‘irregularity’. Conclusions In contrast from current approaches used in clinical setting for the assessment of PD symptoms, this system enables clinicians to animate easily and realistically the ULMP of patients who at the same time are at their homes. Dynamic access of visualized motor tests may also be useful when observing and evaluating therapy-related complications such as under- and over-medications. In future, we foresee to utilize these manual ratings for developing and validating computer methods for automating the process of assessing ULMP of PD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funded by •Parkinson's UK •Scottish Chief Scientist Office •BMA Doris Hillier Award •RS Macdonald Trust •BUPA Foundation •NHS Grampian Endowments •SPRING •National Institute of Health Research, and Engineering and Physical Sciences Research Council

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funded by •Parkinson's UK •Scottish Chief Scientist Office •BMA Doris Hillier Award •RS Macdonald Trust •BUPA Foundation •NHS Grampian Endowments •SPRING •National Institute of Health Research, and Engineering and Physical Sciences Research Council

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is reviewing objective assessments of Parkinson’s disease(PD) motor symptoms, cardinal, and dyskinesia, using sensor systems. It surveys the manifestation of PD symptoms, sensors that were used for their detection, types of signals (measures) as well as their signal processing (data analysis) methods. A summary of this review’s finding is represented in a table including devices (sensors), measures and methods that were used in each reviewed motor symptom assessment study. In the gathered studies among sensors, accelerometers and touch screen devices are the most widely used to detect PD symptoms and among symptoms, bradykinesia and tremor were found to be mostly evaluated. In general, machine learning methods are potentially promising for this. PD is a complex disease that requires continuous monitoring and multidimensional symptom analysis. Combining existing technologies to develop new sensor platforms may assist in assessing the overall symptom profile more accurately to develop useful tools towards supporting better treatment process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behaviour and clinical symptoms. The objective was to determine the effect of neurofeedback and motor training and motor training (MOT) alone on motor and non-motor functions in Parkinson’s disease (PD) in a 10-week small Phase I randomised controlled trial. Methods: 30 patients with PD (Hoehn & Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with motor training. Group 2 (MOT: 15 patients) received motor training alone. The primary outcome measure was the Movement Disorder Society – Unified Parkinson’s Disease Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention ‘off-medication’. The secondary outcome measures were the ‘on-medication’ MDS-UPDRS, the Parkinson’s disease Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the ‘off-medication’ state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with motor training is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions. Clinical Trial website : Unique Identifier: NCT01867827 URL: https://clinicaltrials.gov/ct2/show/NCT01867827?term=NCT01867827&rank=1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Real-world environments comprise surfaces of different textures, densities and gradients, which can threaten postural stability and increase falls risk. However, there has been limited research that has examined how walking on compliant surfaces influences gait and postural stability in older people and PD patients. Methods: PD patients (n = 49) and age-matched controls (n = 32) were assessed using three dimensional motion analysis during self-paced walking on both firm and foam walkways. Falls were recorded prospectively over 12 months using daily falls calendars. Results: Walking on a foam surface influenced the temporospatial characteristics for all groups, but PD fallers adopted very different joint kinematics compared with controls. PD fallers also demonstrated reduced toe clearance and had increased mediolateral head motion(relative to walking velocity) compared with control participants. Conclusions: Postural control deficits in PD fallers may impair their capacity to attenuate surface-related perturbations and control head motion. The risk of falling for PD patients may be increased on less stable surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the elderly, the risks for protein-energy malnutrition from older age, dementia, depression and living alone have been well-documented. Other risk factors including anorexia, gastrointestinal dysfunction, loss of olfactory and taste senses and early satiety have also been suggested to contribute to poor nutritional status. In Parkinson’s disease (PD), it has been suggested that the disease symptoms may predispose people with PD to malnutrition. However, the risks for malnutrition in this population are not well-understood. The current study’s aim was to determine malnutrition risk factors in community-dwelling adults with PD. Nutritional status was assessed using the Patient-Generated Subjective Global Assessment (PG-SGA). Data about age, time since diagnosis, medications and living situation were collected. Levodopa equivalent doses (LDED) and LDED per kg body weight (mg/kg) were calculated. Depression and anxiety were measured using the Beck’s Depression Inventory (BDI) and Spielberger Trait Anxiety questionnaire, respectively. Cognitive function was assessed using the Addenbrooke’s Cognitive Examination (ACE-R). Non-motor symptoms were assessed using the Scales for Outcomes in Parkinson's disease-Autonomic (SCOPA-AUT) and Modified Constipation Assessment Scale (MCAS). A total of 125 community-dwelling people with PD were included, average age of 70.2±9.3(35-92) years and average time since diagnosis of 7.3±5.9(0–31) years. Average body mass index (BMI) was 26.0±5.5kg/m2. Of these, 15% (n=19) were malnourished (SGA-B). Multivariate logistic regression analysis revealed that older age (OR=1.16, CI=1.02-1.31), more depressive symptoms (OR=1.26, CI=1.07-1.48), lower levels of anxiety (OR=.90, CI=.82-.99), and higher LDED per kg body weight (OR=1.57, CI=1.14-2.15) significantly increased malnutrition risk. Cognitive function, living situation, number of prescription medications, LDED, years since diagnosis and the severity of non-motor symptoms did not significantly influence malnutrition risk. Malnutrition results in poorer health outcomes. Proactively addressing the risk factors can help prevent declines in nutritional status. In the current study, older people with PD with depression and greater amounts of levodopa per body weight were at increased malnutrition risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: People with Parkinson’s disease (PD) are at higher risk of malnutrition due to PD symptoms and pharmacotherapy side effects. When pharmacotherapy is no longer effective for symptom control, deep-brain stimulation (DBS) surgery may be considered. The aim of this study was to assess the nutritional status of people with PD who may be at higher risk of malnutrition related to unsatisfactory symptom management with optimised medical therapy. Design: This was an observational study using a convenience sample. Setting: Participants were seen during their hospital admission for their deep brain stimulation surgery. Participants: People with PD scheduled for DBS surgery were recruited from a Brisbane neurological clinic (n=15). Measurements: The Patient-Generated Subjective Global Assessment (PG-SGA), weight, height and body composition were assessed to determine nutritional status. Results: Six participants (40%) were classified as moderately malnourished (SGA-B). Eight participants (53%) reported previous unintentional weight loss (average loss of 13.3%). On average, participants classified as well-nourished (SGA-A) were younger, had shorter disease durations, lower PG-SGA scores, higher body mass (BMI) and fat free mass indices (FFMI) when compared to malnourished participants (SGA-B). Five participants had previously received dietetic advice but only one in relation to unintentional weight loss. Conclusion: Malnutrition remains unrecognised and untreated in this group despite unintentional weight loss and presence of nutrition impact symptoms. Improving nutritional status prior to surgery may improve surgical outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The specific aspects of cognition contributing to balance and gait have not been clarified in people with Parkinson’s disease (PD). Twenty PD participants and twenty age- and gender-matched healthy controls were assessed on cognition and clinical mobility tests. General cognition was assessed with the Mini Mental State Exam and the Addenbrooke’s Cognitive Exam. Executive function was evaluated using the Trail Making Tests (TMT-A and TMT-B) and a computerized cognitive battery which included a series of choice reaction time (CRT) tests. Clinical gait and balance measures included the Tinetti, Timed Up & Go, Berg Balance and Functional Reach tests. PD participants performed significantly worse than the controls on the tests of cognitive and executive function, balance and gait. PD participants took longer on Trail Making Tests, CRT-Location and CRT-Colour (inhibition response). Furthermore, executive function, particularly longer times on CRT-Distracter and greater errors on the TMT-B were associated with worse balance and gait performance in the PD group. Measures of general cognition were not associated with balance and gait measures in either group. For PD participants, attention and executive function were impaired. Components of executive function, particularly those involving inhibition response and distracters, were associated with poorer balance and gait performance in PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.