825 resultados para Pareto optimality


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main aims in artificial intelligent system is to develop robust and efficient optimisation methods for Multi-Objective (MO) and Multidisciplinary Design (MDO) design problems. The paper investigates two different optimisation techniques for multi-objective design optimisation problems. The first optimisation method is a Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The second method combines the concepts of Nash-equilibrium and Pareto optimality with Multi-Objective Evolutionary Algorithms (MOEAs) which is denoted as Hybrid-Game. Numerical results from the two approaches are compared in terms of the quality of model and computational expense. The benefit of using the distributed hybrid game methodology for multi-objective design problems is demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of Game Strategies (GS) have been developed in past decades. They have been used in the fields of economics, engineering, computer science and biology due to their efficiency in solving design optimization problems. In addition, research in multi-objective (MO) and multidisciplinary design optimization (MDO) has focused on developing robust and efficient optimization methods to produce a set of high quality solutions with low computational cost. In this paper, two optimization techniques are considered; the first optimization method uses multi-fidelity hierarchical Pareto optimality. The second optimization method uses the combination of two Game Strategies; Nash-equilibrium and Pareto optimality. The paper shows how Game Strategies can be hybridised and coupled to Multi-Objective Evolutionary Algorithms (MOEA) to accelerate convergence speed and to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid-Game Strategies are clearly demonstrated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper investigates two advanced Computational Intelligence Systems (CIS) for a morphing Unmanned Aerial Vehicle (UAV) aerofoil/wing shape design optimisation. The first CIS uses Genetic Algorithm (GA) and the second CIS uses Hybridized GA (HGA) with the concept of Nash-Equilibrium to speed up the optimisation process. During the optimisation, Nash-Game will act as a pre-conditioner. Both CISs; GA and HGA, are based on Pareto optimality and they are coupled to Euler based Computational Fluid Dynamic (CFD) analyser and one type of Computer Aided Design (CAD) system during the optimisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a performance-based optimisation approach for conducting trade-off analysis between safety (roads) and condition (bridges and roads). Safety was based on potential for improvement (PFI). Road condition was based on surface distresses and bridge condition was based on apparent age per subcomponent. The analysis uses a non-monetised optimisation that expanded upon classical Pareto optimality by observing performance across time. It was found that achievement of good results was conditioned by the availability of early age treatments and impacted by a frontier effect preventing the optimisation algorithm from realising of the long-term benefits of deploying actions when approaching the end of the analysis period. A disaggregated bridge condition index proved capable of improving levels of service in bridge subcomponents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose new solution concepts for multicriteria games and compare them with existing ones. The general setting is that of two-person finite games in normal form (matrix games) with pure and mixed strategy sets for the players. The notions of efficiency (Pareto optimality), security levels, and response strategies have all been used in defining solutions ranging from equilibrium points to Pareto saddle points. Methods for obtaining strategies that yield Pareto security levels to the players or Pareto saddle points to the game, when they exist, are presented. Finally, we study games with more than two qualitative outcomes such as combat games. Using the notion of guaranteed outcomes, we obtain saddle-point solutions in mixed strategies for a number of cases. Examples illustrating the concepts, methods, and solutions are included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a theory for two-person zero sum multicriterion differential games is presented. Various solution concepts based upon the notions of Pareto optimality (efficiency), security and equilibrium are defined. These are shown to have interesting applications in the formulation and analysis of two target or combat differential games. The methods for obtaining outcome regions in the state space, feedback strategies for the players and the mode of play has been discussed in the framework of bicriterion zero sum differential games. The treatment is conceptual rather than rigorous.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers nonzero-sum multicriteria games with continuous kernels. Solution concepts based on the notions of Pareto optimality, equilibrium, and security are extended to these games. Separate necessary and sufficient conditions and existence results are presented for equilibrium, Pareto-optimal response, and Pareto-optimal security strategies of the players.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pile reuse has become an increasingly popular option in foundation design, mainly due to its potential cost and environmental benefits and the problem of underground congestion in urban areas. However, key geotechnical concerns remain regarding the behavior of reused piles and the modeling of foundation systems involving old and new piles to support building loads of the new structure. In this paper, a design and analysis tool for pile reuse projects will be introduced. The tool allows coupling of superstructure stiffness with the foundation model, and includes an optimization algorithm to obtain the best configuration of new piles to work alongside reused piles. Under the concept of Pareto Optimality, multi-objective optimization analyses can also reveal the relationship between material usage and the corresponding foundation performance, providing a series of reuse options at various foundation costs. The components of this analysis tool will be discussed and illustrated through a case history in London, where 110 existing piles are reused at a site to support the proposed new development. The case history reveals the difficulties faced by foundation reuse in urban areas and demonstrates the application of the design tool to tackle these challenges. © ASCE 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optimization of a near-circular low-Earth-orbit multispacecraft refueling problem is studied. The refueling sequence, service time, and orbital transfer time are used as design variables, whereas the mean mission completion time and mean propellant consumed by orbital maneuvers are used as design objectives. The J2 term of the Earth's nonspherical gravity perturbation and the constraints of rendezvous time windows are taken into account. A hybridencoding genetic algorithm, which uses normal fitness assignment to find the minimum mean propellant-cost solution and fitness assignment based on the concept of Pareto-optimality to find multi-objective optimal solutions, is presented. The proposed approach is demonstrated for a typical multispacecraft refueling problem. The results show that the proposed approach is effective, and that the J2 perturbation and the time-window constraints have considerable influences on the optimization results. For the problems in which the J2 perturbation is not accounted for, the optimal refueling order can be simply determined as a sequential order or as the order only based on orbitalplane differences. In contrast, for the problems that do consider the J2 perturbation, the optimal solutions obtained have a variety of refueling orders and use the drift of nodes effectively to reduce the propellant cost for eliminating orbital-plane differences. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently there has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and architectural complexity). Once one has learned a model based on their devised method, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Unfortunately, the standard tests used for this purpose are not able to jointly consider performance measures. The aim of this paper is to resolve this issue by developing statistical procedures that are able to account for multiple competing measures at the same time. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameter of such models, as usually the number of studied cases is very reduced in such comparisons. Real data from a comparison among general purpose classifiers is used to show a practical application of our tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the problem of locating two public goods for a group of agents with single-peaked preferences over an interval. An alternative specifies a location for each public good. In Miyagawa (1998), each agent consumes only his most preferred public good without rivalry. We extend preferences lexicographically and characterize the class of single-peaked preference rules by Pareto-optimality and replacement-domination. This result is considerably different from the corresponding characterization by Miyagawa (2001a).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work performs an algorithmic study of optimization of a conformal radiotherapy plan treatment. Initially we show: an overview about cancer, radiotherapy and the physics of interaction of ionizing radiation with matery. A proposal for optimization of a plan of treatment in radiotherapy is developed in a systematic way. We show the paradigm of multicriteria problem, the concept of Pareto optimum and Pareto dominance. A generic optimization model for radioterapic treatment is proposed. We construct the input of the model, estimate the dose given by the radiation using the dose matrix, and show the objective function for the model. The complexity of optimization models in radiotherapy treatment is typically NP which justifyis the use of heuristic methods. We propose three distinct methods: MOGA, MOSA e MOTS. The project of these three metaheuristic procedures is shown. For each procedures follows: a brief motivation, the algorithm itself and the method for tuning its parameters. The three method are applied to a concrete case and we confront their performances. Finally it is analyzed for each method: the quality of the Pareto sets, some solutions and the respective Pareto curves

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agents with single-peaked preferences share a resource coming from different suppliers; each agent is connected to only a subset of suppliers. Examples include workload balancing, sharing earmarked funds, and rationing utilities after a storm. Unlike in the one supplier model, in a Pareto optimal allocation agents who get more than their peak from underdemanded suppliers, coexist with agents who get less from overdemanded suppliers. Our Egalitarian solution is the Lorenz dominant Pareto optimal allocation. It treats agents with equal demands as equally as the connectivity constraints allow. Together, Strategyproofness, Pareto Optimality, and Equal Treatment of Equals, characterize our solution.