997 resultados para Pareto Distribution
Resumo:
Standard practice of wave-height hazard analysis often pays little attention to the uncertainty of assessed return periods and occurrence probabilities. This fact favors the opinion that, when large events happen, the hazard assessment should change accordingly. However, uncertainty of the hazard estimates is normally able to hide the effect of those large events. This is illustrated using data from the Mediterranean coast of Spain, where the last years have been extremely disastrous. Thus, it is possible to compare the hazard assessment based on data previous to those years with the analysis including them. With our approach, no significant change is detected when the statistical uncertainty is taken into account. The hazard analysis is carried out with a standard model. Time-occurrence of events is assumed Poisson distributed. The wave-height of each event is modelled as a random variable which upper tail follows a Generalized Pareto Distribution (GPD). Moreover, wave-heights are assumed independent from event to event and also independent of their occurrence in time. A threshold for excesses is assessed empirically. The other three parameters (Poisson rate, shape and scale parameters of GPD) are jointly estimated using Bayes' theorem. Prior distribution accounts for physical features of ocean waves in the Mediterranean sea and experience with these phenomena. Posterior distribution of the parameters allows to obtain posterior distributions of other derived parameters like occurrence probabilities and return periods. Predictives are also available. Computations are carried out using the program BGPE v2.0
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
Tropical Cyclones are a continuing threat to life and property. Willoughby (2012) found that a Pareto (power-law) cumulative distribution fitted to the most damaging 10% of US hurricane seasons fit their impacts well. Here, we find that damage follows a Pareto distribution because the assets at hazard follow a Zipf distribution, which can be thought of as a Pareto distribution with exponent 1. The Z-CAT model is an idealized hurricane catastrophe model that represents a coastline where populated places with Zipf- distributed assets are randomly scattered and damaged by virtual hurricanes with sizes and intensities generated through a Monte-Carlo process. Results produce realistic Pareto exponents. The ability of the Z-CAT model to simulate different climate scenarios allowed testing of sensitivities to Maximum Potential Intensity, landfall rates and building structure vulnerability. The Z-CAT model results demonstrate that a statistical significant difference in damage is found when only changes in the parameters create a doubling of damage.
Resumo:
Traditionally, it is assumed that the population size of cities in a country follows a Pareto distribution. This assumption is typically supported by nding evidence of Zipf's Law. Recent studies question this nding, highlighting that, while the Pareto distribution may t reasonably well when the data is truncated at the upper tail, i.e. for the largest cities of a country, the log-normal distribution may apply when all cities are considered. Moreover, conclusions may be sensitive to the choice of a particular truncation threshold, a yet overlooked issue in the literature. In this paper, then, we reassess the city size distribution in relation to its sensitivity to the choice of truncation point. In particular, we look at US Census data and apply a recursive-truncation approach to estimate Zipf's Law and a non-parametric alternative test where we consider each possible truncation point of the distribution of all cities. Results con rm the sensitivity of results to the truncation point. Moreover, repeating the analysis over simulated data con rms the di culty of distinguishing a Pareto tail from the tail of a log-normal and, in turn, identifying the city size distribution as a false or a weak Pareto law.
Resumo:
Um evento extremo de precipitação ocorreu na primeira semana do ano 2000, de 1º a 5 de janeiro, no Vale do Paraíba, parte leste do Estado de São Paulo, Brasil, causando enorme impacto socioeconômico, com mortes e destruição. Este trabalho estudou este evento em 10 estações meteorológicas selecionadas que foram consideradas como aquelas tendo dados mais homogêneos do Que outras estações na região. O modelo de distribuição generalizada de Pareto (DGP) para valores extremos de precipitação de 5 dias foi desenvolvido, individualmente para cada uma dessas estações. Na modelagem da DGP, foi adotada abordagem não-estacionaria considerando o ciclo anual e tendência de longo prazo como co-variaveis. Uma conclusão desta investigação é que as quantidades de precipitação acumulada durante os 5 dias do evento estudado podem ser classificadas como extremamente raras para a região, com probabilidade de ocorrência menor do que 1% para maioria das estações, e menor do que 0,1% em três estações.
Resumo:
Mestrado em Engenharia Eletrotécnica e de Computadores - Área de Especialização de Sistemas e Planeamento Industrial
Resumo:
A bivariate semi-Pareto distribution is introduced and characterized using geometric minimization. Autoregressive minification models for bivariate random vectors with bivariate semi-Pareto and bivariate Pareto distributions are also discussed. Multivariate generalizations of the distributions and the processes are briefly indicated.
Resumo:
This thesis Entitled Bayesian inference in Exponential and pareto populations in the presence of outliers. The main theme of the present thesis is focussed on various estimation problems using the Bayesian appraoch, falling under the general category of accommodation procedures for analysing Pareto data containing outlier. In Chapter II. the problem of estimation of parameters in the classical Pareto distribution specified by the density function. In Chapter IV. we discuss the estimation of (1.19) when the sample contain a known number of outliers under three different data generating mechanisms, viz. the exchangeable model. Chapter V the prediction of a future observation based on a random sample that contains one contaminant. Chapter VI is devoted to the study of estimation problems concerning the exponential parameters under a k-outlier model.
Resumo:
The work is to make a brief discussion of methods to estimate the parameters of the Generalized Pareto distribution (GPD). Being addressed the following techniques: Moments (moments), Maximum Likelihood (MLE), Biased Probability Weighted Moments (PWMB), Unbiased Probability Weighted Moments (PWMU), Mean Power Density Divergence (MDPD), Median (MED), Pickands (PICKANDS), Maximum Penalized Likelihood (MPLE), Maximum Goodness-of-fit (MGF) and the Maximum Entropy (POME) technique, the focus of this manuscript. By way of illustration adjustments were made for the Generalized Pareto distribution, for a sequence of earthquakes intraplacas which occurred in the city of João Câmara in the northeastern region of Brazil, which was monitored continuously for two years (1987 and 1988). It was found that the MLE and POME were the most efficient methods, giving them basically mean squared errors. Based on the threshold of 1.5 degrees was estimated the seismic risk for the city, and estimated the level of return to earthquakes of intensity 1.5°, 2.0°, 2.5°, 3.0° and the most intense earthquake never registered in the city, which occurred in November 1986 with magnitude of about 5.2º
Resumo:
Um evento extremo de precipitação ocorreu na primeira semana do ano 2000, de 1º a 5 de janeiro, no Vale do Paraíba, parte leste do Estado de São Paulo, Brasil, causando enorme impacto socioeconômico, com mortes e destruição. Este trabalho estudou este evento em 10 estações meteorológicas selecionadas que foram consideradas como aquelas tendo dados mais homogêneos do Que outras estações na região. O modelo de distribuição generalizada de Pareto (DGP) para valores extremos de precipitação de 5 dias foi desenvolvido, individualmente para cada uma dessas estações. Na modelagem da DGP, foi adotada abordagem não-estacionaria considerando o ciclo anual e tendência de longo prazo como co-variaveis. Uma conclusão desta investigação é que as quantidades de precipitação acumulada durante os 5 dias do evento estudado podem ser classificadas como extremamente raras para a região, com probabilidade de ocorrência menor do que 1% para maioria das estações, e menor do que 0,1% em três estações.
Resumo:
Using a modified deprivation (or poverty) function, in this paper, we theoretically study the changes in poverty with respect to the 'global' mean and variance of the income distribution using Indian survey data. We show that when the income obeys a log-normal distribution, a rising mean income generally indicates a reduction in poverty while an increase in the variance of the income distribution increases poverty. This altruistic view for a developing economy, however, is not tenable anymore once the poverty index is found to follow a pareto distribution. Here although a rising mean income indicates a reduction in poverty, due to the presence of an inflexion point in the poverty function, there is a critical value of the variance below which poverty decreases with increasing variance while beyond this value, poverty undergoes a steep increase followed by a decrease with respect to higher variance. Identifying this inflexion point as the poverty line, we show that the pareto poverty function satisfies all three standard axioms of a poverty index [N.C. Kakwani, Econometrica 43 (1980) 437; A.K. Sen, Econometrica 44 (1976) 219] whereas the log-normal distribution falls short of this requisite. Following these results, we make quantitative predictions to correlate a developing with a developed economy. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The finding that Pareto distributions are adequate to model Internet packet interarrival times has motivated the proposal of methods to evaluate steady-state performance measures of Pareto/D/1/k queues. Some limited analytical derivation for queue models has been proposed in the literature, but their solutions are often of a great mathematical challenge. To overcome such limitations, simulation tools that can deal with general queueing system must be developed. Despite certain limitations, simulation algorithms provide a mechanism to obtain insight and good numerical approximation to parameters of queues. In this work, we give an overview of some of these methods and compare them with our simulation approach, which are suited to solve queues with Generalized-Pareto interarrival time distributions. The paper discusses the properties and use of the Pareto distribution. We propose a real time trace simulation model for estimating the steady-state probability showing the tail-raising effect, loss probability, delay of the Pareto/D/1/k queue and make a comparison with M/D/1/k. The background on Internet traffic will help to do the evaluation correctly. This model can be used to study the long- tailed queueing systems. We close the paper with some general comments and offer thoughts about future work.
Resumo:
As Leis de Potência, LP, (Power Laws, em inglês), Leis de Pareto ou Leis de Zipf são distribuições estatísticas, com inúmeras aplicações práticas, em sistemas naturais e artificiais. Alguns exemplos são a variação dos rendimentos pessoais ou de empresas, a ocorrência de palavras em textos, as repetições de sons ou conjuntos de sons em composições musicais, o número de vítimas em guerras ou outros cataclismos, a magnitude de tremores de terra, o número de vendas de livros ou CD’s na internet, o número de sítios mais acedidos na Internet, entre muitos outros. Vilfredo Pareto (1897-1906) afirma, no manual de economia política “Cours d’Economie Politique”, que grande parte da economia mundial segue uma determinada distribuição, em que 20% da população reúne 80% da riqueza total do país, estando, assim uma pequena fração da sociedade a controlar a maior fatia do dinheiro. Isto resume o comportamento de uma variável que segue uma distribuição de Pareto (ou Lei de Potência). Neste trabalho pretende-se estudar em pormenor a aplicação das leis de potência a fenómenos da internet, como sendo o número de sítios mais visitados, o número de links existentes em determinado sítio, a distribuição de nós numa rede da internet, o número livros vendidos e as vendas em leilões online. Os resultados obtidos permitem-nos concluir que todos os dados estudados são bem aproximados, numa escala logarítmica, por uma reta com declive negativo, seguindo, assim, uma distribuição de Pareto. O desenvolvimento e crescimento da Web, tem proporcionado um aumento do número dos utilizadores, conteúdos e dos sítios. Grande parte dos exemplos presentes neste trabalho serão alvo de novos estudos e de novas conclusões. O fato da internet ter um papel preponderante nas sociedades modernas, faz com que esteja em constante evolução e cada vez mais seja possível apresentar fenómenos na internet associados Lei de Potência.
Resumo:
Nesta dissertação aborda-se a aplicação de Leis de Potência (LPs), também designadas de Leis de Pareto ou Leis de Zipf, a dados económicos. As LPs são distribuições estatísticas amplamente usadas na compreensão de sistemas naturais e artificiais. O aparecimento das LPs deve-se a Vilfredo Pareto que, no século XIX, publicou o manual de economia política,“Cours d’Economie Politique”. Nesse manual refere que grande parte da economia mundial segue uma LP, em que 20% da população reúne 80% da riqueza do país. Esta propriedade carateriza uma variável que segue uma distribuição de Pareto (ou LP). Desde então, as LPs foram aplicadas a outros fenómenos, nomeadamente a ocorrência de palavras em textos, os sobrenomes das pessoas, a variação dos rendimentos pessoais ou de empresas, o número de vítimas de inundações ou tremores de terra, os acessos a sítios da internet, etc. Neste trabalho, é estudado um conjunto de dados relativos às fortunas particulares ou coletivas de pessoas ou organizações. Mais concretamente são analisados dados recolhidos sobre as fortunas das mulheres mais ricas do mundo, dos homens mais ricos no ramo da tecnologia, das famílias mais ricas, das 20 mulheres mais ricas da América, dos 400 homens mais ricos da América, dos homens mais ricos do mundo, dos estabelecimentos mais ricos do mundo, das empresas mais ricas do mundo e dos países mais ricos do mundo, bem como o valor de algumas empresas no mercado de ações. Os resultados obtidos revelam uma boa aproximação de parte desses dados a uma LP simples e uma boa aproximação pelos restantes dados a uma LP dupla. Observa-se, assim, diferenciação na forma de crescimento das fortunas nos diferentes casos estudados. Como trabalho futuro, procurar-se-á analisar estes e outros dados, utilizando outras distribuições estatísticas, como a exponencial ou a lognormal, que possuem comportamentos semelhantes à LP, com o intuito de serem comparados os resultados. Um outro aspeto interessante será o de encontrar a explicação analítica para as vantagens da aproximação de dados económicos por uma LP simples vs por uma LP dupla.