922 resultados para Parametric modeling of repair time
Resumo:
The service quality of any sector has two major aspects namely technical and functional. Technical quality can be attained by maintaining technical specification as decided by the organization. Functional quality refers to the manner which service is delivered to customer which can be assessed by the customer feed backs. A field survey was conducted based on the management tool SERVQUAL, by designing 28 constructs under 7 dimensions of service quality. Stratified sampling techniques were used to get 336 valid responses and the gap scores of expectations and perceptions are analyzed using statistical techniques to identify the weakest dimension. To assess the technical aspects of availability six months live outage data of base transceiver were collected. The statistical and exploratory techniques were used to model the network performance. The failure patterns have been modeled in competing risk models and probability distribution of service outage and restorations were parameterized. Since the availability of network is a function of the reliability and maintainability of the network elements, any service provider who wishes to keep up their service level agreements on availability should be aware of the variability of these elements and its effects on interactions. The availability variations were studied by designing a discrete time event simulation model with probabilistic input parameters. The probabilistic distribution parameters arrived from live data analysis was used to design experiments to define the availability domain of the network under consideration. The availability domain can be used as a reference for planning and implementing maintenance activities. A new metric is proposed which incorporates a consistency index along with key service parameters that can be used to compare the performance of different service providers. The developed tool can be used for reliability analysis of mobile communication systems and assumes greater significance in the wake of mobile portability facility. It is also possible to have a relative measure of the effectiveness of different service providers.
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.
Resumo:
We address the problem of local-polynomial modeling of smooth time-varying signals with unknown functional form, in the presence of additive noise. The problem formulation is in the time domain and the polynomial coefficients are estimated in the pointwise minimum mean square error (PMMSE) sense. The choice of the window length for local modeling introduces a bias-variance tradeoff, which we solve optimally by using the intersection-of-confidence-intervals (ICI) technique. The combination of the local polynomial model and the ICI technique gives rise to an adaptive signal model equipped with a time-varying PMMSE-optimal window length whose performance is superior to that obtained by using a fixed window length. We also evaluate the sensitivity of the ICI technique with respect to the confidence interval width. Simulation results on electrocardiogram (ECG) signals show that at 0dB signal-to-noise ratio (SNR), one can achieve about 12dB improvement in SNR. Monte-Carlo performance analysis shows that the performance is comparable to the basic wavelet techniques. For 0 dB SNR, the adaptive window technique yields about 2-3dB higher SNR than wavelet regression techniques and for SNRs greater than 12dB, the wavelet techniques yield about 2dB higher SNR.
Resumo:
Providing on line travel time information to commuters has become an important issue for Advanced Traveler Information Systems and Route Guidance Systems in the past years, due to the increasing traffic volume and congestion in the road networks. Travel time is one of the most useful traffic variables because it is more intuitive than other traffic variables such as flow, occupancy or density, and is useful for travelers in decision making. The aim of this paper is to present a global view of the literature on the modeling of travel time, introducing crucial concepts and giving a thorough classification of the existing tech- niques. Most of the attention will focus on travel time estimation and travel time prediction, which are generally not presented together. The main goals of these models, the study areas and methodologies used to carry out these tasks will be further explored and categorized.
Resumo:
We address the problem of recognition and retrieval of relatively weak industrial signal such as Partial Discharges (PD) buried in excessive noise. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) which has similar time-frequency characteristics as PD pulse. Therefore conventional frequency based DSP techniques are not useful in retrieving PD pulses. We employ statistical signal modeling based on combination of long-memory process and probabilistic principal component analysis (PPCA). An parametric analysis of the signal is exercised for extracting the features of desired pules. We incorporate a wavelet based bootstrap method for obtaining the noise training vectors from observed data. The procedure adopted in this work is completely different from the research work reported in the literature, which is generally based on deserved signal frequency and noise frequency.
Resumo:
Abstract The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions.
Resumo:
Time series, from a narrow point of view, is a sequence of observations on a stochastic process made at discrete and equally spaced time intervals. Its future behavior can be predicted by identifying, fitting, and confirming a mathematical model. In this paper, time series analysis is applied to problems concerning runwayinduced vibrations of an aircraft. A simple mathematical model based on this technique is fitted to obtain the impulse response coefficients of an aircraft system considered as a whole for a particular type of operation. Using this model, the output which is the aircraft response can be obtained with lesser computation time for any runway profile as the input.
Resumo:
In this paper we discuss the recent progresses in spectral finite element modeling of complex structures and its application in real-time structural health monitoring system based on sensor-actuator network and near real-time computation of Damage Force Indicator (DFI) vector. A waveguide network formalism is developed by mapping the original variational problem into the variational problem involving product spaces of 1D waveguides. Numerical convergence is studied using a h()-refinement scheme, where is the wavelength of interest. Computational issues towards successful implementation of this method with SHM system are discussed.
Resumo:
The problem of on-line recognition and retrieval of relatively weak industrial signals such as partial discharges (PD), buried in excessive noise, has been addressed in this paper. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) due to the overlapping broad band frequency spectrum of PI and PD pulses. Therefore, on-line, onsite, PD measurement is hardly possible in conventional frequency based DSP techniques. The observed PD signal is modeled as a linear combination of systematic and random components employing probabilistic principal component analysis (PPCA) and the pdf of the underlying stochastic process is obtained. The PD/PI pulses are assumed as the mean of the process and modeled instituting non-parametric methods, based on smooth FIR filters, and a maximum aposteriori probability (MAP) procedure employed therein, to estimate the filter coefficients. The classification of the pulses is undertaken using a simple PCA classifier. The methods proposed by the authors were found to be effective in automatic retrieval of PD pulses completely rejecting PI.
Resumo:
Models of river flow time series are essential in efficient management of a river basin. It helps policy makers in developing efficient water utilization strategies to maximize the utility of scarce water resource. Time series analysis has been used extensively for modeling river flow data. The use of machine learning techniques such as support-vector regression and neural network models is gaining increasing popularity. In this paper we compare the performance of these techniques by applying it to a long-term time-series data of the inflows into the Krishnaraja Sagar reservoir (KRS) from three tributaries of the river Cauvery. In this study flow data over a period of 30 years from three different observation points established in upper Cauvery river sub-basin is analyzed to estimate their contribution to KRS. Specifically, ANN model uses a multi-layer feed forward network trained with a back-propagation algorithm and support vector regression with epsilon intensive-loss function is used. Auto-regressive moving average models are also applied to the same data. The performance of different techniques is compared using performance metrics such as root mean squared error (RMSE), correlation, normalized root mean squared error (NRMSE) and Nash-Sutcliffe Efficiency (NSE).
Resumo:
This dissertation is concerned with the development of a new discrete element method (DEM) based on Non-Uniform Rational Basis Splines (NURBS). With NURBS, the new DEM is able to capture sphericity and angularity, the two particle morphological measures used in characterizing real grain geometries. By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing rectangle (DIRECT) global optimization procedure is employed as a solution procedure to the closest-point projection problem, which enables the contact treatment of non-convex particles. A contact dynamics (CD) approach to the NURBS-based discrete method is also formulated. By combining particle shape flexibility, properties of implicit time-integration, and non-penetrating constraints, we target applications in which the classical DEM either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD implementation is made simple by adopting a variational framework, which enables the resulting discrete problem to be readily solved using off-the-shelf mathematical programming solvers. The capabilities of the NURBS-based DEM are demonstrated through 2D numerical examples that highlight the effects of particle morphology on the macroscopic response of granular assemblies under quasistatic and dynamic flow conditions, and a 3D characterization of material response in the shear band of a real triaxial specimen.
Resumo:
The curing temperature, pressure, and curing time have significant influence on finished thermosetting composite products. The time of pressure application is one of the most important processing parameters in the manufacture of a thermosetting composite. The determination of the time of pressure application relies on analysis of the viscosity variation of the polymer, associated with curing temperature and curing time. To determine it, the influence of the time of pressure application on the physical properties of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based continuous carbon fiber composite was studied. It was found that a stepwise temperature cure cycle is more suitable for manufacture of this composite. There are two viscosity valleys, in the case of the E-PEK system, associated with temperature during a stepwise cure cycle. The analysis on the effects of reinforcement fraction and defect content on the composite sheet quality indicates that the width-adjustable second viscosity valley provides a suitable pressing window. The viscosity, ranging from 400 to 1200 Pa . s at the second viscosity valley, is the optimal viscosity range for applying pressure to ensure appropriate resin flow during curing process, which enables one to get a finished composite with optimal fiber volume fraction and low void content. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Modeling of on-body propagation channels is of paramount importance to those wishing to evaluate radio channel performance for wearable devices in body area networks (BANs). Difficulties in modeling arise due to the highly variable channel conditions related to changes in the user's state and local environment. This study characterizes these influences by using time-series analysis to examine and model signal characteristics for on-body radio channels in user stationary and mobile scenarios in four different locations: anechoic chamber, open office area, hallway, and outdoor environment. Autocorrelation and cross-correlation functions are reported and shown to be dependent on body state and surroundings. Autoregressive (AR) transfer functions are used to perform time-series analysis and develop models for fading in various on-body links. Due to the non-Gaussian nature of the logarithmically transformed observed signal envelope in the majority of mobile user states, a simple method for reproducing the failing based on lognormal and Nakagami statistics is proposed. The validity of the AR models is evaluated using hypothesis testing, which is based on the Ljung-Box statistic, and the estimated distributional parameters of the simulator output compared with those from experimental results.