A Long Memory Process Based Parametric Modeling and Recognition of PD Signal


Autoria(s): Shetty, Pradeep Kumar
Contribuinte(s)

Kasabov, N

Mudi, RK

Pal, S

Parui, SK

Pal, NR

Data(s)

2004

Resumo

We address the problem of recognition and retrieval of relatively weak industrial signal such as Partial Discharges (PD) buried in excessive noise. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) which has similar time-frequency characteristics as PD pulse. Therefore conventional frequency based DSP techniques are not useful in retrieving PD pulses. We employ statistical signal modeling based on combination of long-memory process and probabilistic principal component analysis (PPCA). An parametric analysis of the signal is exercised for extracting the features of desired pules. We incorporate a wavelet based bootstrap method for obtaining the noise training vectors from observed data. The procedure adopted in this work is completely different from the research work reported in the literature, which is generally based on deserved signal frequency and noise frequency.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/43773/1/A_Long_Memory.pdf

Shetty, Pradeep Kumar (2004) A Long Memory Process Based Parametric Modeling and Recognition of PD Signal. In: 11th International Conference on Neural Information Processing, NOV 22-25, 2004, Calcutta, INDIA.

Publicador

Springer-Verlag Berlin

Relação

http://www.springerlink.com/content/r9pxqmc8xrwx3fcv/

http://eprints.iisc.ernet.in/43773/

Palavras-Chave #High Voltage Engineering (merged with EE)
Tipo

Conference Paper

PeerReviewed