840 resultados para Parallel Transmission Phase Cycling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method for ameliorating high-field image distortion caused by radio frequency/tissue interaction is presented and modeled, The proposed method uses, but is not restricted to, a shielded four-element transceive phased array coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both images together, the image distortion can be reduced several-fold. A hybrid finite-difference time-domain/method-of-moments method is used to theoretically demonstrate the method and also to predict the radio frequency behavior inside the human head. in addition, the proposed method is used in conjunction with the GRAPPA reconstruction technique to enable rapid imaging. Simulation results reported herein for IIT (470 MHz) brain imaging applications demonstrate the feasibility of the concept where multiple acquisitions using parallel imaging elements with GRAPPA reconstruction results in improved image quality. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a full-range parallel Fourier-domain optical coherence tomography (FD-OCT) in which a tomogram free of mirror images as well as DC and autocorrelation terms is obtained in parallel. The phase and amplitude of two-dimensional spectral interferograms are accurately detected by using sinusoidal phase-modulating interferometry and a two-dimensional CCD camera, which allows for the reconstruction of two-dimensional complex spectral interferograms. By line-by-line inverse Fourier transformation of the two-dimensional complex spectral interferogram, a full-range parallel FD-OCT is realized. Tomographic images of two separated glass coverslips obtained with our method are presented as a proof-of-principle experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a typical non-symmetrical system with two parallel three phase transmission lines, modal transformation is applied using some examples of single real transformation matrices. These examples are applied searching an adequate single real transformation matrix to two parallel three phase transmission line systems. The analyses are started with the eigenvector and eigenvalue studies, using Clarke's transformation or linear combinations of Clarke's elements. The Z C and parameters are analyzed for the case that presents the smallest errors between the exact eigenvalues and the single real transformation matrix application results. The single real transformation determined for this case is based on Clarke's matrix and its main characteristic is the use of a unique homopolar reference. So, the homopolar mode becomes a connector mode between the two three-phase circuits of the analyzed system. ©2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common and practical paradigm in cooperative communications is the use of a dynamically selected 'best' relay to decode and forward information from a source to a destination. Such a system consists of two core phases: a relay selection phase, in which the system expends resources to select the best relay, and a data transmission phase, in which it uses the selected relay to forward data to the destination. In this paper, we study and optimize the trade-off between the selection and data transmission phase durations. We derive closed-form expressions for the overall throughput of a non-adaptive system that includes the selection phase overhead, and then optimize the selection and data transmission phase durations. Corresponding results are also derived for an adaptive system in which the relays can vary their transmission rates. Our results show that the optimal selection phase overhead can be significant even for fast selection algorithms. Furthermore, the optimal selection phase duration depends on the number of relays and whether adaptation is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data centre connections can greatly benefit from parallel transmission channels on one multimode fibre (MMF). Shortwave wavelength division multiplexing (SWDM) achieves parallel transmission through spectral multiplexing. Furthermore, MMFs offer a spatial dimension that should be exploited to increase parallel transmission, albeit in a cost-effective way. In this paper, it is shown that SWDM and spatial multiplexing can be combined in intensity modulation and direct detection MMF transmission systems that use selective offset excitation and mode-selective spatial filtering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tool to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over the analog counterparts. These advantages include superiority in performance,s peed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomonent signals, adaptive filtering, and operations at very low frequencies. Following the recent developments in engineering which occurred in the 1980's and 1990's, DSP became one of the world's fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications. This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005-2008), and the Note of Professor Peter O'Shea at Queensland University of Technology. Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z. Discrete-time Fourier, and Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP. Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics. We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A focused library based on the marine natural products polyandrocarpamines A (1) and B (2) has been designed and synthesised using parallel solution-phase chemistry. In silico physicochemical property calculations were performed on synthetic candidates in order to optimise the library for drug discovery and chemical biology. A library of ten 2-aminoimidazolone products (3–12) was prepared by coupling glycocyamidine and a variety of aldehydes using a one-step stereoselective aldol condensation reaction under microwave conditions. All analogues were characterised by NMR, UV, IR and MS. The library was evaluated for cytotoxicity towards the prostate cancer cell lines, LNCaP, PC-3 and 22Rv1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fungal metabolite 3-chloro-4-hydroxyphenylacetic acid (1) was utilized in the generation of a unique drug-like screening library using parallel solution-phase synthesis. A 20-membered amide library (3–22) was generated by first converting 1 to methyl (3-chloro-4-hydroxyphenyl)acetate (2), then reacting this scaffold with a diverse series of primary amines via a solvent-free aminolysis procedure. The structures of the synthetic analogues (3–22) were elucidated by spectroscopic data analysis. The structures of compounds 8, 12, and 22 were confirmed by single X-ray crystallographic analysis. All compounds were evaluated for cytotoxicity against a human prostate cancer cell line (LNCaP) and for antiparasitic activity toward Trypanosoma brucei brucei and Plasmodium falciparum and showed no significant activity at 10 μM. The library was also tested for effects on the lipid content of LNCaP and PC-3 prostate cancer cells, and it was demonstrated that the fluorobenzyl analogues (12–14) significantly reduced cellular phospholipid and neutral lipid levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel long-acting β2-agonist olodaterol demonstrated an acceptable safety profile in short-term phase II clinical studies. This analysis of four randomized, double-blind, placebo-controlled, parallel-group, phase III studies (1222.11, NCT00782210; 1222.12, NCT00782509; 1222.13, NCT00793624; 1222.14, NCT00796653) evaluated the long-term safety of olodaterol once daily (QD) in a large cohort of patients with moderate to very severe (Global initiative for chronic Obstructive Lung Disease 2-4) chronic obstructive pulmonary disease (COPD). The studies compared olodaterol (5 or 10 μg) QD via Respimat®, formoterol 12 μg twice daily (BID) via Aerolizer® (1222.13 and 1222.14), and placebo for 48 weeks. Patients continued receiving background maintenance therapy, with ∼60% receiving concomitant cardiovascular therapy and 25% having a history of concomitant cardiac disease. Pre-specified analyses of pooled data assessed the adverse events (AEs) and serious AEs in the whole population, and in subgroups with cardiac disease, along with in-depth electrocardiogram and Holter monitoring. In total, 3104 patients were included in the safety analysis: 876 received olodaterol 5 μg, 883 received olodaterol 10 μg, 885 received placebos, and 460 received formoterol 12 μg BID. Overall incidence of on-treatment AEs (71.2%), serious AEs (16.1%), and deaths (1.7%) were balanced across treatment groups. Respiratory and cardiovascular AEs, including major adverse cardiac events, were reported at similar frequencies in placebo and active treatment groups. The safety profiles of both olodaterol 5 μg (marketed and registered dose) and 10 μg QD delivered via Respimat® are comparable to placebo and formoterol BID in this population, with no safety signals identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Breast reconstruction aims to improve health-related quality of life after mastectomy. However, evidence guiding patients and surgeons in shared decision-making concerning the optimal type or timing of surgery is lacking.

METHODS: QUEST comprised two parallel feasibility phase III randomized multicentre trials to assess the impact of the type and timing of latissimus dorsi breast reconstruction on health-related quality of life when postmastectomy radiotherapy is unlikely (QUEST A) or highly probable (QUEST B). The primary endpoint for the feasibility phase was the proportion of women who accepted randomization, and it would be considered feasible if patient acceptability rates exceeded 25 per cent of women approached. A companion QUEST Perspectives Study (QPS) of patients (both accepting and declining trial participation) and healthcare professionals assessed trial acceptability.

RESULTS: The QUEST trials opened in 15 UK centres. After 18 months of recruitment, 17 patients were randomized to QUEST A and eight to QUEST B, with overall acceptance rates of 19 per cent (17 of 88) and 22 per cent (8 of 36) respectively. The QPS recruited 56 patients and 51 healthcare professionals. Patient preference was the predominant reason for declining trial entry, given by 47 (53 per cent) of the 88 patients approached for QUEST A and 22 (61 per cent) of the 36 approached for QUEST B. Both trials closed to recruitment in December 2012, acknowledging the challenges of achieving satisfactory patient accrual.

CONCLUSION: Despite extensive efforts to overcome recruitment barriers, it was not feasible to reach timely recruitment targets within a feasibility study. Patient preferences for breast reconstruction types and timings were common, rendering patients unwilling to enter the trial.