981 resultados para Parallel Mechanism
Resumo:
A 3-DOF (degrees-of-freedom) multi-mode translational/spherical PM (parallel mechanism) with lockable joints is a novel reconfigurable PM. It has both 3-DOF spatial translational operation mode and 3-DOF spherical operation mode. This paper presents an approach to the type synthesis of translational/spherical PMs with lockable joints. Using the proposed approach, several 3-DOF translational/spherical PMs are obtained. It is found that these translational/spherical PMs do not encounter constraint singular configurations and self-motion of sub-chain of a leg during reconfiguration. The approach can also be used for synthesizing other classes of multi-mode PMs with lockable joints, multi-mode PMs with variable kinematic joints, partially decoupled PMs, and reconfigurable PMs with a reconfigurable platform.
Resumo:
Inspired by the commercial application of the Exechon machine, this paper proposed a novel parallel kinematic machine (PKM) named Exe-Variant. By exchanging the sequence of kinematic pairs in each limb of the Exechon machine, the Exe-Variant PKM claims an arrangement of 2UPR/1SPR topology and consists of two identical UPR limbs and one SPR limb. The inverse kinematics of the 2UPR/1SPR parallel mechanism was firstly analyzed based on which a conceptual design of the Exe-Variant was carried out. Then an algorithm of reachable workspace searching for the Exe-Variant and the Exchon was proposed. Finally, the workspaces of two example systems of the Exechon and the Exe-Variant with approximate dimensions were numerically simulated and compared. The comparison shows that the Exe-Variant possesses a competitive workspace with the Exechon machine, indicating it can be used as a promising reconfigurable module in a hybrid 5-DOF machine tool system.
Resumo:
This paper proposes conceptual designs of multi-degree(s) of freedom (DOF) compliant parallel manipulators (CPMs) including 3-DOF translational CPMs and 6-DOF CPMs using a building block based pseudo-rigid-body-model (PRBM) approach. The proposed multi-DOF CPMs are composed of wire-beam based compliant mechanisms (WBBCMs) as distributed-compliance compliant building blocks (CBBs). Firstly, a comprehensive literature review for the design approaches of compliant mechanisms is conducted, and a building block based PRBM is then presented, which replaces the traditional kinematic sub-chain with an appropriate multi-DOF CBB. In order to obtain the decoupled 3-DOF translational CPMs (XYZ CPMs), two classes of kinematically decoupled 3-PPPR (P: prismatic joint, R: revolute joint) translational parallel mechanisms (TPMs) and 3-PPPRR TPMs are identified based on the type synthesis of rigid-body parallel mechanisms, and WBBCMs as the associated CBBs are further designed. Via replacing the traditional actuated P joint and the traditional passive PPR/PPRR sub-chain in each leg of the 3-DOF TPM with the counterpart CBBs (i.e. WBBCMs), a number of decoupled XYZ CPMs are obtained by appropriate arrangements. In order to obtain the decoupled 6-DOF CPMs, an orthogonally-arranged decoupled 6-PSS (S: spherical joint) parallel mechanism is first identified, and then two example 6-DOF CPMs are proposed by the building block based PRBM method. It is shown that, among these designs, two types of monolithic XYZ CPM designs with extended life have been presented.
Resumo:
This paper deals with a completely kinematostaticaly decoupled XY compliant parallel manipulator (CPM) composed of exactly-constrained compliant modules. A new 4-PP XY translational parallel mechanism (TPM) with a new topology structure is firstly proposed where each two P (P: prismatic) joints on the base in two non-adjacent legs are rigidly connected. A novel 4-PP XY CPM is then obtained by replacing each traditional P join on the base in the 4-PP XY TPM with a compound basic parallelogram module (CBPM) and replacing each traditional P joint on the motion stage with a basic parallelogram module (BPM). Approximate analytical model is derived with comparison to the FEA (finite element analysis) model and experiment for a case study. The proposed novel XY CPM has a compact configuration with good dynamics, and is able to well constrain the parasitic rotation and the cross-axis coupling of the motion stage. The cross-axis motion of the input stage can be completely eliminated, and the lost motion between the input stage and the motion stage is significantly reduced.
Resumo:
In combination of the advantages of both parallel mechanisms and compliant mechanisms, a compliant parallel mechanism with two rotational DOFs (degrees of freedom) is designed to meet the requirement of a lightweight and compact pan-tilt platform. Firstly, two commonly-used design methods i.e. direct substitution and FACT (Freedom and Constraint Topology) are applied to design the configuration of the pan-tilt system, and similarities and differences of the two design alternatives are compared. Then inverse kinematic analysis of the candidate mechanism is implemented by using the pseudo-rigid-body model (PRBM), and the Jacobian related to its differential kinematics is further derived to help designer realize dynamic analysis of the 8R compliant mechanism. In addition, the mechanism’s maximum stress existing within its workspace is tested by finite element analysis. Finally, a method to determine joint damping of the flexure hinge is presented, which aims at exploring the effect of joint damping on actuator selection and real-time control. To the authors’ knowledge, almost no existing literature concerns with this issue.
Resumo:
[ES]Por lo tanto el objetivo de este trabajo es resolver el problema de posición de un manipulador paralelo analizando los movimientos parásitos y la influencia de los mismos sobre el problema. Para ello inicialmente se realizará un modelo del manipulador en un programa de CAD. Posteriormente se resolverán las ecuaciones de posición y se implementará esta resolución en un programa de cálculo como MATLAB. Finalmente se compararán los resultados obtenidos con un manipulador de características similares pero una configuración ligeramente distinta.
Resumo:
The structures, properties and electron transfer reactivity of the ClO/ClO- coupling system are studied in this paper at ab initio (UHF and UMP2) levels and the Density Functional Theory (DFT: UB3LYP, UB3P86, UB3PW91) levels employing 6311 + G(3df) basis set and on the basis of the Golden-rule of the time-dependent perturbation theory. Investigations indicate that the results obtained using the UB3LYP method employing 6-311 + G(3df) basis set is in excellent agreement with the experiment. For this coupling system, six stable coupling modes have been found which correspond to six different encounter complexes and denote six different electron transfer mechanism: four O-O directly linked structures (one collinear: D-h, one anti-parallel: C-s, two twist: C-2) and two Cl-O linked structures (cis- and anti- C-s structures). The activation energies, the stabilization energies and the electronic coupling matrix elements have also been calculated for the electron transfer reactions via these six different mechanism at the UB3LYP/6-311 + G(3df) level, and then the electron transfer rates are determined at the same level. The most favorable coupling mode to the electron transfer is the anti-parallel mechanism. The averaged electron transfer rate is about 5.58 X 10(11) M-1 s(-1). It is also implied that the B3LYP method can give more reasonable results for the electron transfer reactivity of this system. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
提出了用于测量平面运动位姿的三自由度串联和并联测量方法,介绍了串联和并联测量方法的测量原理.通过建立串联测量方法的误差模型,得出了几何误差源与原始测量参数的映射关系和对末端位姿误差的影响情况,得到了这种方法的精度分析结果.仿真结果和试验数据证明了分析的正确性.同时,从几何误差源的产生和测量运动特性等方面对串联和并联测量方法进行了比较.
Resumo:
为了提高刨削加工能力,而采用考虑到并联机构的特点而提出了并联刨床的概念并对其进行了简单说明.采用对机床进行分解的方法对机床的各功能模块分别建立刚度模型,并利用变形线性叠加的原理对机床的并联部分刚度进行分析.采用有限元软件对机床的床身框架及平面约束机构部分的刚度进行分析.并以仿真和实验加工的方式进行了刚度特性研究.
Resumo:
本文针对一种混合结构的并联机器人机床,采用串并联运动学等效的方法,进行了运动学研究,推导了系统的位移、速度和加速度逆解的表达式,这可用于机床在加工时的运动规划及插补算法的实现。本文还进行了运动学仿真研究,机床的实际加工操作应用的结果表明,推导的运动学算法的正确性。
Resumo:
鉴于并联机床普遍存在有效作业空间小、运动控制复杂和实用刚度还不理想等不足.采用了串并联混合式机床运动结构.针对所研究的4—4构型串并联机床,分析了影响作业性能的几何约束条件,采用基于位置逆解模型的极限边界数值搜索法,确定了机床作业空间,并通过数值仿真研究获得了机床运动参数和结构参数对作业空间的影响规律,为优化机床结构尺寸以获得尽可能大的有效作业空间奠定了基础。
Resumo:
针对一种新型的4-DOF并联机构的结构特点,采用基于逆解计算的网格法对其工作空间求解的算法进行了详细的分析,并利用Matlab编制了相应的程序,以Matlab图的形式描绘了几种情况下的工作空间区域,并对此进行了分析。
Resumo:
针对原沈阳自动化研究所研制开发的五轴并联铣床的结构特点 ,提出了一种改进方案 ,并对这种新的构型的运动学进行了分析 ,针对其特点 ,从新的角度给出了位置正解及反解的方程。该构型的位置正解由于使用了附加传感器并充分考虑到机构特点而使得正解方程形式非常简单并且其中只存在一次项 ,从而避免了对复杂数值解法的采用
Resumo:
本文系统基于3自由度并联机器人和3维图形仿真实现了空间6维运动的模拟,构造了一种3自由度并联机构来模拟船的3维转动,并给出了并联平台的运动学逆解,采用图形仿真虚拟作战环境,模拟船的3维移动,并分析了图形驱动原因。