31 resultados para Paralelização
Resumo:
Neste trabalho é estudada a viabilidade de uma implementação em paralelo do algoritmo scale invariant feature transform (SIFT) para identificação de íris. Para a implementação do código foi utilizada a arquitetura para computação paralela compute unified device architecture (CUDA) e a linguagem OpenGL shading language (GLSL). O algoritmo foi testado utilizando três bases de dados de olhos e íris, o noisy visible wavelength iris image Database (UBIRIS), Michal-Libor e CASIA. Testes foram feitos para determinar o tempo de processamento para verificação da presença ou não de um indivíduo em um banco de dados, determinar a eficiência dos algoritmos de busca implementados em GLSL e CUDA e buscar valores de calibração que melhoram o posicionamento e a distribuição dos pontos-chave na região de interesse (íris) e a robustez do programa final.
Resumo:
A obtenção de imagens usando tomografia computadorizada revolucionou o diagnóstico de doenças na medicina e é usada amplamente em diferentes áreas da pesquisa científica. Como parte do processo de obtenção das imagens tomográficas tridimensionais um conjunto de radiografias são processadas por um algoritmo computacional, o mais usado atualmente é o algoritmo de Feldkamp, David e Kress (FDK). Os usos do processamento paralelo para acelerar os cálculos em algoritmos computacionais usando as diferentes tecnologias disponíveis no mercado têm mostrado sua utilidade para diminuir os tempos de processamento. No presente trabalho é apresentada a paralelização do algoritmo de reconstrução de imagens tridimensionais FDK usando unidades gráficas de processamento (GPU) e a linguagem CUDA-C. São apresentadas as GPUs como uma opção viável para executar computação paralela e abordados os conceitos introdutórios associados à tomografia computadorizada, GPUs, CUDA-C e processamento paralelo. A versão paralela do algoritmo FDK executada na GPU é comparada com uma versão serial do mesmo, mostrando maior velocidade de processamento. Os testes de desempenho foram feitos em duas GPUs de diferentes capacidades: a placa NVIDIA GeForce 9400GT (16 núcleos) e a placa NVIDIA Quadro 2000 (192 núcleos).
Resumo:
Tese de dout., Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2003
Resumo:
O objetivo desta dissertação é a paralelização e a avaliação do desempenho de alguns métodos de resolução de sistemas lineares esparsos. O DECK foi utilizado para implementação dos métodos em um cluster de PCs. A presente pesquisa é motivada pela vasta utilização de Sistemas de Equações Lineares em várias áreas científicas, especialmente, na modelagem de fenômenos físicos através de Equações Diferenciais Parciais (EDPs). Nessa área, têm sido desenvolvidas pesquisas pelo GMC-PAD – Grupo de Matemática da Computação e Processamento de Alto Desempenho da UFRGS, para as quais esse trabalho vem contribuindo. Outro fator de motivação para a realização dessa pesquisa é a disponibilidade de um cluster de PCs no Instituto de Informática e do ambiente de programação paralela DECK – Distributed Execution and Communication Kernel. O DECK possibilita a programação em ambientes paralelos com memória distribuída e/ou compartilhada. Ele está sendo desenvolvido pelo grupo de pesquisas GPPD – Grupo de Processamento Paralelo e Distribuído e com a paralelização dos métodos, nesse ambiente, objetiva-se também validar seu funcionamento e avaliar seu potencial e seu desempenho. Os sistemas lineares originados pela discretização de EDPs têm, em geral, como características a esparsidade e a numerosa quantidade de incógnitas. Devido ao porte dos sistemas, para a resolução é necessária grande quantidade de memória e velocidade de processamento, característicos de computações de alto desempenho. Dois métodos de resolução foram estudados e paralelizados, um da classe dos métodos diretos, o Algoritmo de Thomas e outro da classe dos iterativos, o Gradiente Conjugado. A forma de paralelizar um método é completamente diferente do outro. Isso porque o método iterativo é formado por operações básicas de álgebra linear, e o método direto é formado por operações elementares entre linhas e colunas da matriz dos coeficientes do sistema linear. Isso permitiu a investigação e experimentação de formas distintas de paralelismo. Do método do Gradiente Conjugado, foram feitas a versão sem précondicionamento e versões pré-condicionadas com o pré-condicionador Diagonal e com o pré-condicionador Polinomial. Do Algoritmo de Thomas, devido a sua formulação, somente a versão básica foi feita. Após a paralelização dos métodos de resolução, avaliou-se o desempenho dos algoritmos paralelos no cluster, através da realização de medidas do tempo de execução e foram calculados o speedup e a eficiência. As medidas empíricas foram realizadas com variações na ordem dos sistemas resolvidos e no número de nodos utilizados do cluster. Essa avaliação também envolveu a comparação entre as complexidades dos algoritmos seqüenciais e a complexidade dos algoritmos paralelos dos métodos. Esta pesquisa demonstra o desempenho de métodos de resolução de sistemas lineares esparsos em um ambiente de alto desempenho, bem como as potencialidades do DECK. Aplicações que envolvam a resolução desses sistemas podem ser realizadas no cluster, a partir do que já foi desenvolvido, bem como, a investigação de précondicionadores, comparação do desempenho com outros métodos de resolução e paralelização dos métodos com outras ferramentas possibilitando uma melhor avaliação do DECK.
Resumo:
The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Techniques of image combination, with extraction of objects to set a final scene, are very used in applications from photos montages to cinematographic productions. These techniques are called digital matting. With them is possible to decrease the cost of productions, because it is not necessary for the actor to be filmed in the location where the final scene occurs. This feature also favors its use in programs made to digital television, which demands a high quality image. Many digital matting algorithms use markings done on the images, to demarcate what is the foreground, the background and the uncertainty areas. This marking is called trimap, which is a triple map containing these three informations. The trimap is done, typically, from manual markings. In this project, methods were created that can be used in digital matting algorithms, with restriction of time and without human interaction, that is, the creation of an algorithm that generates the trimap automatically. This last one can be generated from the difference between a color of an arbitrary background and the foreground, or by using a depth map. It was also created a matting method, based on the Geodesic Matting (BAI; SAPIRO, 2009), which has an inferior processing time then the original one. Aiming to improve the performance of the applications that generates the trimap and of the algorithms that generates the alphamap (map that associates a value to the transparency of each pixel of the image), allowing its use in applications with time restrictions, it was used the CUDA architecture. Taking advantage, this way, of the computational power and the features of the GPGPU, which is massively parallel
Resumo:
Identify opportunities for software parallelism is a task that takes a lot of human time, but once some code patterns for parallelism are identified, a software could quickly accomplish this task. Thus, automating this process brings many benefits such as saving time and reducing errors caused by the programmer [1]. This work aims at developing a software environment that identifies opportunities for parallelism in a source code written in C language, and generates a program with the same behavior, but with higher degree of parallelism, compatible with a graphics processor compatible with CUDA architecture.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
A Restauração de Imagens é uma técnica que possui aplicações em várias áreas, por exemplo, medicina, biologia, eletrônica, e outras, onde um dos objetivos da restauração de imagens é melhorar o aspecto final de imagens de amostras que por algum motivo apresentam imperfeições ou borramentos. As imagens obtidas pelo Microscópio de Força Atômica apresentam borramentos causados pela interação de forças entre a ponteira do microscópio e a amostra em estudo. Além disso apresentam ruídos aditivos causados pelo ambiente. Neste trabalho é proposta uma forma de paralelização em GPU de um algoritmo de natureza serial que tem por fim a Restauração de Imagens de Microscopia de Força Atômica baseado na Regularização de Tikhonov.
Resumo:
Este trabalho que envolve matemática aplicada e processamento paralelo: seu objetivo é avaliar uma estratégia de implementação em paralelo para algoritmos de diferenças finitas que aproximam a solução de equações diferenciais de evolução. A alternativa proposta é a substituição dos produtos matriz-vetor efetuados sequencialmente por multiplicações matriz-matriz aceleradas pelo método de Strassen em paralelo. O trabalho desenvolve testes visando verificar o ganho computacional relacionado a essa estratégia de paralelização, pois as aplicacações computacionais, que empregam a estratégia sequencial, possuem como característica o longo período de computação causado pelo grande volume de cálculo. Inclusive como alternativa, nós usamos o algoritmo em paralelo convencional para solução de algoritmos explícitos para solução de equações diferenciais parciais evolutivas no tempo. Portanto, de acordo com os resultados obtidos, nós observamos as características de cada estratégia em paralelo, tendo como principal objetivo diminuir o esforço computacional despendido.
Resumo:
Multi-Processor System-on-Chip (MPSoC) possui vários processadores, em um único chip. Várias aplicações podem ser executadas de maneira paralela ou uma aplicação paralelizável pode ser particionada e alocada em cada processador, a fim de acelerar a sua execução. Um problema em MPSoCs é a comunicação entre os processadores, necessária para a execução destas aplicações. Neste trabalho, propomos uma arquitetura de rede de interconexão baseada na topologia crossbar, com memória compartilhada. Esta arquitetura é parametrizável, possuindo N processadores e N módulos de memórias. A troca de informação entre os processadores é feita via memória compartilhada. Neste tipo de implementação cada processador executa a sua aplicação em seu próprio módulo de memória. Através da rede, todos os processadores têm completo acesso a seus módulos de memória simultaneamente, permitindo que cada aplicação seja executada concorrentemente. Além disso, um processador pode acessar outros módulos de memória, sempre que necessite obter dados gerados por outro processador. A arquitetura proposta é modelada em VHDL e seu desempenho é analisado através da execução paralela de uma aplicação, em comparação à sua respectiva execução sequencial. A aplicação escolhida consiste na otimização de funções objetivo através do método de Otimização por Enxame de Partículas (Particle Swarm Optimization - PSO). Neste método, um enxame de partículas é distribuído igualmente entre os processadores da rede e, ao final de cada interação, um processador acessa o módulo de memória de outro processador, a fim de obter a melhor posição encontrada pelo enxame alocado neste. A comunicação entre processadores é baseada em três estratégias: anel, vizinhança e broadcast. Essa aplicação foi escolhida por ser computacionalmente intensiva e, dessa forma, uma forte candidata a paralelização.
Resumo:
Controle de processos é uma das muitas aplicações que aproveitam as vantagens do uso da teoria de conjuntos nebulosos. Nesse tipo de aplicação, o controlador é, geralmente, embutido no dispositivo controlado. Esta dissertação propõe uma arquitetura reconfigurável eficiente para controladores nebulosos embutidos. A arquitetura é parametrizável, de tal forma, que permite a configuração do controlador para que este possa ser usado na implementação de qualquer aplicação ou modelo nebuloso. Os parâmetros de configuração são: o número de variáveis de entrada (N); o número de variáveis de saída (M); o número de termos linguísticos (Q); e o número total de regras (P). A arquitetura proposta proporciona também a configuração das características que definem as regras e as funções de pertinência de cada variável de entrada e saída, permitindo a escalabilidade do projeto. A composição das premissas e consequentes das regras são configuráveis, de acordo com o controlador nebuloso objetivado. A arquitetura suporta funções de pertinência triangulares, mas pode ser estendida para aceitar outras formas, do tipo trapezoidal, sem grandes modificações. As características das funções de pertinência de cada termo linguístico, podem ser ajustadas de acordo com a definição do controlador nebuloso, permitindo o uso de triângulos. Virtualmente, não há limites máximos do número de regras ou de termos linguísticos empregados no modelo, bem como no número de variáveis de entrada e de saída. A macro-arquitetura do controlador proposto é composta por N blocos de fuzzificação, 1 bloco de inferência, M blocos de defuzzificação e N blocos referentes às características das funções de pertinência. Este último opera apenas durante a configuração do controlador. A função dos blocos de fuzzificação das variáveis de entrada é executada em paralelo, assim como, os cálculos realizados pelos blocos de defuzzificação das variáveis de saída. A paralelização das unidades de fuzzificação e defuzzificação permite acelerar o processo de obtenção da resposta final do controlador. Foram realizadas várias simulações para verificar o correto funcionamento do controlador, especificado em VHDL. Em um segundo momento, para avaliar o desempenho da arquitetura, o controlador foi sintetizado em FPGA e testado em seis aplicações para verificar sua reconfigurabilidade e escalabilidade. Os resultados obtidos foram comparados com os do MATLAB em cada aplicação implementada, para comprovar precisão do controlador.
Resumo:
Neste trabalho de dissertação apresentaremos uma classe de precondicionadores baseados na aproximação esparsa da inversa da matriz de coecientes, para a resolução de sistemas lineares esparsos de grandes portes através de métodos iterativos, mais especificamente métodos de Krylov. Para que um método de Krylov seja eficiente é extremamente necessário o uso de precondicionadores. No contexto atual, onde computadores de arquitetura híbrida são cada vez mais comuns temos uma demanda cada vez maior por precondicionadores paralelizáveis. Os métodos de inversa aproximada que serão descritos possuem aplicação paralela, pois so dependem de uma operação de produto matriz-vetor, que é altamente paralelizável. Além disso, alguns dos métodos também podem ser construídos em paralelo. A ideia principal é apresentar uma alternativa aos tradicionais precondicionadores que utilizam aproximações dos fatores LU, que apesar de robustos são de difícil paralelização.