864 resultados para Packed-bed batch reactor
Resumo:
A polyurethane packed-bed-biofilm sequential batch reactor was fed with synthetic substrate simulating the composition of UASB reactor effluents. Two distinct ammonia nitrogen concentrations (125 and 250 mg l(-1)) were supplied during two sequential long-term experiments of 160 days each (320 total). Cycles of 24 h under intermittent aeration for periods of 1 h were applied, and ethanol was added as a carbon source at the beginning of each anoxic period. Nitrite was the main oxidized nitrogen compound which accumulated only during the aerated phases of the batch cycle. A consistent decrease of nitrite concentration started always immediately after the interruption of oxygen supply and addition of the electron donor. Removal to below detection limits of all nitrogen soluble forms was always observed at the end of the 24 h cycles for both initial concentrations. Polyurethane packed-bed matrices and ethanol amendments conferred high process stability. Microbial investigation by cloning suggested that nitrification was carried out by Nitrosomonas-like species whereas denitrification was mediated by unclassified species commonly observed in denitrifying environments. The packed-bed batch bioreactor favored the simultaneous colonization of distinct microbial groups within the immobilized microbial biomass. The biofilm was capable of actively oxidizing ammonium and denitrification at high ratios in intermittent intervals within 24 h cycles. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work reports on the anaerobic treatment of gasoline-contaminated groundwater in a pilot-scale horizontal-flow anaerobic immobilized biomass reactor inoculated with a methanogenic consortium. BTEX removal rates varied from 59 to 80%, with a COD removal efficiency of 95% during the 70 days of in situ trial. BTEX removal was presumably carried out by microbial syntrophic interactions, and at the observed concentrations, the interactions among the aromatic compounds may have enhanced overall biodegradation rates by allowing microbial growth instead of co-inhibiting biodegradation. There is enough evidence to support the conclusion that the pilot-scale reactor responded similarly to the lab-scale experiments previously reported for this design. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The production of xylooligosaccharides (XOS) using a packed-bed enzymatic reactor was studied at lab-scale. For this, a xylanase from Aspergillus versicolor was immobilized on different supports. The optimal derivative was xylanase immobilized on glyoxyl-agarose supports. This derivative preserved 85% of its catalytic activity; it was around 700-fold more stable than the soluble enzyme after incubation at 60. °C and was able to be reused for at least 10 1. h-cycles retaining full catalytic activity. About 18% of oligosaccharides with prebiotic interest (X2-X6) were produced by the glyoxyl derivative in batch hydrolysis. The production of xylobiose was 2.5-fold higher using the immobilized preparation than with soluble enzyme and small concentrations of xylose (<0.1%) were observed only at the end of the reaction. The derivative was employed on a packed bed reactor, and the continuous operation with no recirculation reached 56% and 70% of the end of reaction with flow rates of 60. mL/h and 12. mL/h, respectively. In continuous operation with recirculation at a flow rate of 60. mL/h, the reaction was completed after four hours. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A marine Pseudomonas sp BTMS-51, immobilized by Ca-alginate gel entrapment was used for the production of extracellular Lglutaminase under repeated batch process and continuous process employing a packed bed reactor (PBR). Immobilized cells could produce an average of 25 U/ml of enzyme over 20 cycles of repeated batch operation and did not show any decline in production upon reuse. The enzyme yield correlated well with the biomass content in the beads. Continuous production of the enzyme in PBR was studied at different substrate concentrations and dilution rates. In general, the volumetric productivity increased with increased dilution rate and substrate concentrations and the substrate conversion efficiency declined. The PBR operated under conditions giving maximal substrate conversion efficiency gave an average yield of 21.07 U/ml and an average productivity of 13.49 U/ml/h. The system could be operated for 120 h without any decline in productivity
Resumo:
L-Glutamine amidohydrolase (L-glutaminase, EC 3.5.1.2) is a therapeutically and industrially important enzyme. Because it is a potent antileukemic agent and a flavor-enhancing agent used in the food industry, many researchers have focused their attention on L-glutaminase. In this article, we report the continuous production of extracellular L-glutaminase by the marine fungus Beauveria bassiana BTMF S-10 in a packed-bed reactor. Parameters influencing bead production and performance under batch mode were optimized in the order-support (Na-alginate) concentration, concentration of CaCl2 for bead preparation, curing time of beads, spore inoculum concentration, activation time, initial pH of enzyme production medium, temperature of incubation, and retention time. Parameters optimized under batch mode for L-glutaminase production were incorporated into the continuous production studies. Beads with 12 × 108 spores/g of beads were activated in a solution of 1% glutamine in seawater for 15 h, and the activated beads were packed into a packed-bed reactor. Enzyme production medium (pH 9.0) was pumped through the bed, and the effluent was collected from the top of the column. The effect of flow rate of the medium, substrate concentration, aeration, and bed height on continuous production of L-glutaminase was studied. Production was monitored for 5 h in each case, and the volumetric productivity was calculated. Under the optimized conditions for continuous production, the reactor gave a volumetric productivity of 4.048 U/(mL·h), which indicates that continuous production of the enzyme by Ca-alginate-immobilizedspores is well suited for B. bassiana and results in a higher yield of enzyme within a shorter time. The results indicate the scope of utilizing immobilized B. bassiana for continuous commercial production of L-glutaminase
Resumo:
The potential of the lipase from Rhizopus oryzae immobilised on SiO(2)-PVA to catalyse the interesterification of the milkfat with soybean oil in a packed bed reactor running on continuous mode was evaluated. The reactor operated continuously for 35 days at 45 degrees C, and during 12 days, no significant decrease in the initial lipase activity was verified. Interesterification yields were in the range from 35 to 38% wt, which gave an interesterified product having 59% lower consistency in relation to non-interesterified blend. Results showed the potential of the lipase from Rhizopus oryzae to mediate the interesterification of milkfat with soybean oil in packed bed reactor, attaining a more spreadable product under a cool temperature. The biocatalyst operational stability was assessed and an inactivation profile was found to follow the Arrhenius model, revealing values of 34 days and 0.034 day(-1), for half-life and a deactivation coefficient, respectively.
Resumo:
The aim of this study was the glycerolysis of babassu oil catalyzed by immobilized lipase from Burkholderia cepacia, in a continuous packed-bed reactor. The best reaction conditions were previously established in batchwise via response surface methodology as a function of glycerol-to-oil molar ratio and reaction temperature. The reactor operated continuously for 22 days at 50 A degrees C, and during the first 6 days, no significant decrease on the initial lipase activity was observed. Monoglycerides concentration was in the range from 25 to 33 wt.%. Subsequently, a progressive decrease in the activity was detected, and an inactivation profile described by Arrhenius model estimated values of 50 days and 1.37 x 10(-2) h(-1), for the half-life and deactivation coefficient, respectively.
Resumo:
The production of hydrogen from soft-drink wastewater in two upflow anaerobic packed-bed reactors was evaluated. The results show that soft-drink wastewater is a good source for hydrogen generation. Data from both reactors indicate that the reactor without medium containing macro- and micronutrients (R2) provided a higher hydrogen yield (3.5 mol H(2) mol(-1) of sucrose) as compared to the reactor (R1) with a nutrient-containing medium (3.3 mol H(2) mol(-1) of sucrose). Reactor R2 continuously produced hydrogen, whereas reactor R1 exhibited a short period of production and produced lower amounts of hydrogen. Better hydrogen production rates and percentages of biogas were also observed for reactor R2, which produced 0.4 L h(-1) L(-1) and 15.8% of H(2), compared to reactor R1, which produced 0.2 L h(-1) L(-1) and 2.6% of H(2). The difference in performance between the reactors was likely due to changes in the metabolic pathway for hydrogen production and decreases in bed porosity as a result of excessive biomass growth in reactor R1. Molecular biological analyses of samples from reactors R1 and R2 indicated the presence of several microorganisms, including Clostridium (91% similarity), Enterobacter (93% similarity) and Klebsiella (97% similarity). Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Transesterification of palm oil with ethanol catalyzed by Pseudomonas fluorescens lipase immobilized on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) was performed in a continuous packed-bed reactor (PBR). Two strategies were used for improving the miscibility of the substrates: the addition of the organic solvent tert-butanol and the surfactant Triton X-100. Results were compared to those obtained in a solventless reactor, which displayed a biphasic system that passed through the reactor. Using this system, the ethyl ester yield of 61.6 +/- 1.2% was obtained at steady state. Both Triton X-100 and tert-butanol systems were found to be suitable to promote the miscibility of the starting materials; however, the use of Triton X-100 reduced the yield to levels lower than 20%, because of the enzyme desorption from the support surface, as confirmed by scanning electron microscopy analysis. The best performance was found for the reactor running in the presence of tert-butanol which resulted in a stable operating system and an average yield of 87.6 +/- 2.5%. This strategy also gave high biocatalyst operational stability, revealing a half-life of 48 days and an inactivation constant of 0.6 X 10(-3) h(-1).
Resumo:
This study investigates the feasibility of an anaerobic bioreactor for treating low contents of organic matter to generate organic acids and hydrogen. The device employed for this purpose was a horizontal packed-bed bioreactor fed with glucose-based synthetic wastewater and operated with hydraulic retention times from 0.5 to 2 h. A microbial biofilm was developed without previous inoculation, using expanded clay beads (4.8-6.3 mm) as support material. Alkalinity was found to be the main parameter affecting the production of hydrogen and organic acids, and the system produced optimal output when operating without a buffer agent. The average hydrogen production was 2.48, 2.15 and 1.81 molH(2) mol(-1) of glucose for NaHCO3 influent concentrations of 0, 1000 and 2000 mg L-1, respectively. The operational regime of the bioreactor, the support material and the controlled alkalinity were effective in selecting and immobilizing microbial fermenting biofilms, which successfully produced hydrogen and organic acids throughout the operating period. Exploratory assays indicated the feasibility of organic acid extraction using an anionic polymeric resin. (C) 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dissertation for the Master degree in Biotechnology
Resumo:
BACKGROUND: A packed bed bioreactor (PBBR) activated with an indigenous nitrifying bacterial consortia was developed and commercialized for rapid establishment of nitrification in brackish water and marine hatchery systems in the tropics. The present study evaluated nitrification in PBBR integrated into a Penaeus monodon recirculating maturation system under different substrate concentrations and flow rates. RESULTS:Instantnitrificationwasobservedafter integration ofPBBRinto thematuration system.TANandNO2-Nconcentrations were always maintained below0.5 mg L−1 during operation. The TANandNO2-N removalwas significant (P < 0.001) in all the six reactor compartments of the PBBR having the substrates at initial concentrations of 2, 5 and 10 mg L−1. The average volumetric TAN removal rates increased with flow rates from 43.51 (250 L h−1) to 130.44 (2500 L h−1) gTAN m−3 day−1 (P < 0.05). FISH analysis of the biofilms after 70 days of operation gave positive results with probes NSO 190 ((β ammonia oxidizers), NsV 443 (Nitrosospira spp.) NEU (halophilic Nitrosomonas), Ntspa 712 (Phylum Nitrospira) indicating stability of the consortia. CONCLUSION: The PBBR integrated into the P. monodon maturation system exhibited significant nitrification upon operation for 70 days as well as at different substrate concentrations and flow rates. This system can easily be integrated into marine and brackish water aquaculture systems, to establish instantaneous nitrification
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)