865 resultados para PROCESAMIENTO DE IMÁGENES
Resumo:
En este proyecto se ha realizado el procesamiento de una imagen satelital multiespectral de México concretamente centrada en la región del Lago de Chapala. Este proceso tiene como objetivo la distinción de tierra y agua mediante un proceso semi-automático utilizando distintos software o herramientas informáticas. Dentro del proyecto podemos destacar ciertas fases u operaciones como el preprocesado realizado a la imagen satelital donde se han aplicado una serie de transformaciones, la aplicación de técnicas de clasificación supervisada mediante la realización de entrenamiento y testeo con regiones de interés extraídas de la imagen satelital para la obtención de clasificadores o la aplicación de estos clasificadores en la binarización de la imagen, obteniendo una imagen binaria donde un valor representa agua y otro tierra. También podemos destacar el empleo de índices de agua y vegetación como una herramienta fundamental en la detección y en el análisis de cuerpos de agua. Éstos han marcado la calidad de los resultados obtenidos en el proyecto.
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Eléctrica con Especialidad en Electrónica) U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias Forestales) U.A.N.L.
Resumo:
El cáncer de próstata es el tipo de cáncer con mayor prevalencia entre los hombres del mundo occidental y, pese a tener una alta tasa de supervivencia relativa, es la segunda mayor causa de muerte por cáncer en este sector de la población. El tratamiento de elección frente al cáncer de próstata es, en la mayoría de los casos, la radioterapia externa. Las técnicas más modernas de radioterapia externa, como la radioterapia modulada en intensidad, permiten incrementar la dosis en el tumor mientras se reduce la dosis en el tejido sano. Sin embargo, la localización del volumen objetivo varía con el día de tratamiento, y se requieren movimientos muy pequeños de los órganos para sacar partes del volumen objetivo fuera de la región terapéutica, o para introducir tejidos sanos críticos dentro. Para evitar esto se han desarrollado técnicas más avanzadas, como la radioterapia guiada por imagen, que se define por un manejo más preciso de los movimientos internos mediante una adaptación de la planificación del tratamiento basada en la información anatómica obtenida de imágenes de tomografía computarizada (TC) previas a la sesión terapéutica. Además, la radioterapia adaptativa añade la información dosimétrica de las fracciones previas a la información anatómica. Uno de los fundamentos de la radioterapia adaptativa es el registro deformable de imágenes, de gran utilidad a la hora de modelar los desplazamientos y deformaciones de los órganos internos. Sin embargo, su utilización conlleva nuevos retos científico-tecnológicos en el procesamiento de imágenes, principalmente asociados a la variabilidad de los órganos, tanto en localización como en apariencia. El objetivo de esta tesis doctoral es mejorar los procesos clínicos de delineación automática de contornos y de cálculo de dosis acumulada para la planificación y monitorización de tratamientos con radioterapia adaptativa, a partir de nuevos métodos de procesamiento de imágenes de TC (1) en presencia de contrastes variables, y (2) cambios de apariencia del recto. Además, se pretende (3) proveer de herramientas para la evaluación de la calidad de los contornos obtenidos en el caso del gross tumor volumen (GTV). Las principales contribuciones de esta tesis doctoral son las siguientes: _ 1. La adaptación, implementación y evaluación de un algoritmo de registro basado en el flujo óptico de la fase de la imagen como herramienta para el cálculo de transformaciones no-rígidas en presencia de cambios de intensidad, y su aplicabilidad a tratamientos de radioterapia adaptativa en cáncer de próstata con uso de agentes de contraste radiológico. Los resultados demuestran que el algoritmo seleccionado presenta mejores resultados cualitativos en presencia de contraste radiológico en la vejiga, y no distorsiona la imagen forzando deformaciones poco realistas. 2. La definición, desarrollo y validación de un nuevo método de enmascaramiento de los contenidos del recto (MER), y la evaluación de su influencia en el procedimiento de radioterapia adaptativa en cáncer de próstata. Las segmentaciones obtenidas mediante el MER para la creación de máscaras homogéneas en las imágenes de sesión permiten mejorar sensiblemente los resultados de los algoritmos de registro en la región rectal. Así, el uso de la metodología propuesta incrementa el índice de volumen solapado entre los contornos manuales y automáticos del recto hasta un valor del 89%, cercano a los resultados obtenidos usando máscaras manuales para el registro de las dos imágenes. De esta manera se pueden corregir tanto el cálculo de los nuevos contornos como el cálculo de la dosis acumulada. 3. La definición de una metodología de evaluación de la calidad de los contornos del GTV, que permite la representación de la distribución espacial del error, adaptándola a volúmenes no-convexos como el formado por la próstata y las vesículas seminales. Dicha metodología de evaluación, basada en un nuevo algoritmo de reconstrucción tridimensional y una nueva métrica de cuantificación, presenta resultados precisos con una gran resolución espacial en un tiempo despreciable frente al tiempo de registro. Esta nueva metodología puede ser una herramienta útil para la comparación de distintos algoritmos de registro deformable orientados a la radioterapia adaptativa en cáncer de próstata. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como cimiento de futuros avances en el procesamiento de imagen médica en los tratamientos de radioterapia adaptativa en cáncer de próstata. Asimismo, se siguen abriendo nuevas líneas de aplicación futura de métodos de procesamiento de imágenes médicas con el fin de mejorar los procesos de radioterapia adaptativa en presencia de cambios de apariencia de los órganos, e incrementar la seguridad del paciente. I.2 Inglés Prostate cancer is the most prevalent cancer amongst men in the Western world and, despite having a relatively high survival rate, is the second leading cause of cancer death in this sector of the population. The treatment of choice against prostate cancer is, in most cases, external beam radiation therapy. The most modern techniques of external radiotherapy, as intensity modulated radiotherapy, allow increasing the dose to the tumor whilst reducing the dose to healthy tissue. However, the location of the target volume varies with the day of treatment, and very small movements of the organs are required to pull out parts of the target volume outside the therapeutic region, or to introduce critical healthy tissues inside. Advanced techniques, such as the image-guided radiotherapy (IGRT), have been developed to avoid this. IGRT is defined by more precise handling of internal movements by adapting treatment planning based on the anatomical information obtained from computed tomography (CT) images prior to the therapy session. Moreover, the adaptive radiotherapy adds dosimetric information of previous fractions to the anatomical information. One of the fundamentals of adaptive radiotherapy is deformable image registration, very useful when modeling the displacements and deformations of the internal organs. However, its use brings new scientific and technological challenges in image processing, mainly associated to the variability of the organs, both in location and appearance. The aim of this thesis is to improve clinical processes of automatic contour delineation and cumulative dose calculation for planning and monitoring of adaptive radiotherapy treatments, based on new methods of CT image processing (1) in the presence of varying contrasts, and (2) rectum appearance changes. It also aims (3) to provide tools for assessing the quality of contours obtained in the case of gross tumor volume (GTV). The main contributions of this PhD thesis are as follows: 1. The adaptation, implementation and evaluation of a registration algorithm based on the optical flow of the image phase as a tool for the calculation of non-rigid transformations in the presence of intensity changes, and its applicability to adaptive radiotherapy treatment in prostate cancer with use of radiological contrast agents. The results demonstrate that the selected algorithm shows better qualitative results in the presence of radiological contrast agents in the urinary bladder, and does not distort the image forcing unrealistic deformations. 2. The definition, development and validation of a new method for masking the contents of the rectum (MER, Spanish acronym), and assessing their impact on the process of adaptive radiotherapy in prostate cancer. The segmentations obtained by the MER for the creation of homogenous masks in the session CT images can improve significantly the results of registration algorithms in the rectal region. Thus, the use of the proposed methodology increases the volume overlap index between manual and automatic contours of the rectum to a value of 89%, close to the results obtained using manual masks for both images. In this way, both the calculation of new contours and the calculation of the accumulated dose can be corrected. 3. The definition of a methodology for assessing the quality of the contours of the GTV, which allows the representation of the spatial distribution of the error, adapting it to non-convex volumes such as that formed by the prostate and seminal vesicles. Said evaluation methodology, based on a new three-dimensional reconstruction algorithm and a new quantification metric, presents accurate results with high spatial resolution in a time negligible compared to the registration time. This new approach may be a useful tool to compare different deformable registration algorithms oriented to adaptive radiotherapy in prostate cancer In conclusion, this PhD thesis corroborates the postulated research hypotheses, and is intended to serve as a foundation for future advances in medical image processing in adaptive radiotherapy treatment in prostate cancer. In addition, it opens new future applications for medical image processing methods aimed at improving the adaptive radiotherapy processes in the presence of organ’s appearance changes, and increase the patient safety.
Resumo:
En este proyecto se pretende diseñar un sistema embebido capaz de realizar procesamiento de imágenes y guiado de un hexacóptero. El hexacóptero dispondrá a bordo de una cámara así como las baterías y todo el hardware necesario para realizar el procesamiento de la información visual obtenida e implementar el controlador necesario para permitir su guiado. OpenCV es una biblioteca de primitivas de procesado de imagen que permite crear algoritmos de Visión por Computador de última generación. OpenCV fue desarrollado originalmente por Intel en 1999 para mostrar la capacidad de procesamiento de los micros de Intel, por lo que la mayoría de la biblioteca está optimizada para correr en estos micros, incluyendo las extensiones MMX y SSE. http://en.wikipedia.org/wiki/OpenCV Actualmente es ampliamente utilizada tanto por la comunidad científica como por la industria, para desarrollar nuevos algoritmos para equipos de sobremesa y sobre todo para sistemas empotrados (robots móviles, cámaras inteligentes, sistemas de inspección, sistemas de vigilancia, etc..). Debido a su gran popularidad se han realizado compilaciones de la biblioteca para distintos sistemas operativos tradicionales (Windows, Linux, Mac), para dispositivos móviles (Android, iOS) y para sistemas embebidos basados en distintos tipos de procesadores (ARM principalmente). - iPhone port: http://www.eosgarden.com/en/opensource/opencv-ios/overview/ - Android port: http://opencv.willowgarage.com/wiki/AndroidExperimental Un ejemplo de plataforma embebida es la tarjeta Zedboard (http://www.zedboard.org/), que representa el estado del arte en dispositivos embebidos basados en la arquitectura Cortex de ARM. La tarjeta incluye un procesador Cortex-A9 dual core junto con una gran cantidad de periféricos y posibilidades de conexión a tarjetas de expansión de terceras partes, lo que permite desarrollar aplicaciones en muy distintos campos de la Visión por Computador.
Resumo:
El objetivo del proyecto consiste en crear un videojuego cuyos niveles se generen a partir del procesamiento de imágenes que el usuario podrá capturar con la cámara del móvil, o que podrá obtener de la galería de fotos del dispositivo. Se realizará una segmentación de la imagen y se extraerán así los elementos a utilizar en el juego, como por ejemplo zonas por las que poder movernos con un personaje, o bien piezas de un puzzle que debamos volver a construir. El videojuego se implementará con el motor Cocos2d-x.
Resumo:
Abstract: As time has passed, the general purpose programming paradigm has evolved, producing different hardware architectures whose characteristics differ widely. In this work, we are going to demonstrate, through different applications belonging to the field of Image Processing, the existing difference between three Nvidia hardware platforms: two of them belong to the GeForce graphics cards series, the GTX 480 and the GTX 980 and one of the low consumption platforms which purpose is to allow the execution of embedded applications as well as providing an extreme efficiency: the Jetson TK1. With respect to the test applications we will use five examples from Nvidia CUDA Samples. These applications are directly related to Image Processing, as the algorithms they use are similar to those from the field of medical image registration. After the tests, it will be proven that GTX 980 is both the device with the highest computational power and the one that has greater consumption, it will be seen that Jetson TK1 is the most efficient platform, it will be shown that GTX 480 produces more heat than the others and we will learn other effects produced by the existing difference between the architecture of the devices.
Resumo:
En el año 2016 se vendieron en EE.UU más de un millón de Unmanned Aerial Vehicles (UAVs, Vehículos aéreos no tripulados), casi el doble que el año anterior, país del que se dispone de información. Para el año 2020 se estima que este mercado alcance los 5.600 millones de dólares en todo el mundo, creciendo a un ritmo del 30% anual. Este crecimiento demuestra que existe un mercado en expansión con muchas y diversas oportunidades de investigación. El rango de aplicaciones en los que se utiliza este tipo de vehículos es innumerable. Desde finales del s.XX, los UAVs han estado presentes en multitud de aplicaciones, principalmente en misiones de reconocimiento. Su principal ventaja radica en que pueden ser utilizados en situaciones de alto riesgo sin suponer una amenaza para ningún tripulante. En los últimos años, la fabricación de vehículos asequibles económicamente ha permitido que su uso se extienda a otros sectores. A día de hoy uno de los campos en los que ha adquirido gran relevancia es en agricultura, contribuyendo a la automatización y monitorización de cultivos, pero también se ha extendido su uso a diferentes sistemas, tales como seguridad, cartografía o monitorización, entre otros [1]. Es en esta situación en la que se propone el proyecto SALACOM [2], que explora la posibilidad de utilizar esta tecnología en sistemas de repuesta rápida para la detección y contención de vertidos contaminantes en entornos acuáticos con el apoyo de vehículos autónomos marinos de superficie (USV, Unmanned Surface Vehicles). En el mencionado proyecto se pretende utilizar sistemas UAVs para detectar y analizar las zonas de vertido y proveer la información respecto a la localización y las técnicas de contención adecuadas a los sistemas USV. Una vez se haya realizado el análisis de la situación del vertido, los USV trabajarían conjuntamente con los UAVs para desplegar las barreras de protección seleccionadas en la zona afectada. Para esto, los UAVs o drones, términos similares en lo que respecta a este proyecto y que a lo largo de esta memoria se usarán indistintamente, deben ser capaces de despegar desde los USV y volver a aterrizar sobre ellos una vez realizada su labor. El proyecto que se describe en la presente memoria se centra en la fase de aterrizaje y, más concretamente, en la detección de la plataforma seleccionada como plantilla mediante técnicas de tratamiento de imágenes. Esto serviría como sistema de apoyo para guiar el dron hacia la plataforma para que pueda realizar el descenso correctamente y finalizar así su misión o bien para realizar operaciones de recarga de la batería. El dron está equipado con la correspondiente cámara de visión a bordo, con la que obtiene las imágenes, las procesa e identifica la plataforma para dirigirse hacia ella, si bien, dado que el sistema de procesamiento de imágenes no se encuentra totalmente operativo, este trabajo se centra en el desarrollo de una aplicación software independiente del sistema de visión a bordo del dron, basada en el desarrollo de técnicas de reconocimiento de la plataforma. La plataforma a utilizar proviene de una patente [3], consistente en una figura geométrica con formas características, de muy difícil aparición en entornos de exterior. La figura pintada en negro se halla impresa sobre un panel de fondo blanco de 1m × 1m de superficie. En este trabajo se han explorado diversas opciones disponibles para realizar la identificación de las regiones de interés. El principal objetivo es realizar la selección de una tecnología que pueda cumplir potencialmente con los criterios necesarios para llevar a cabo la tarea y seleccionar los métodos de detección adecuados para realizar la identificación de la figura contenida en la plataforma. Se ha pretendido utilizar tecnologías de fácil uso, amplío soporte y, cuando ha sido posible, de código libre. Todo ello integrado en una aplicación informática, que es la que se presenta en el presente trabajo.
Resumo:
En esta tesis de máster se presenta una metodología para el análisis automatizado de las señales del sonar de largo alcance y una aplicación basada en la técnica de reconocimiento óptico de Optical Character Recognition, caracteres (OCR). La primera contribución consiste en el análisis de imágenes de sonar mediante técnicas de procesamiento de imágenes. En este proceso, para cada imagen de sonar se extraen y se analizan las regiones medibles, obteniendo para cada región un conjunto de características. Con la ayuda de los expertos, cada región es identi cada en una clase (atún o no-atún). De este modo, mediante el aprendizaje supervisado se genera la base de datos y, a su vez, se obtiene un modelo de clasi cación. La segunda contribución es una aplicación OCR que reconoce y extrae de las capturas de pantalla de imágenes de sonar, los caracteres alfanuméricos correspondientes a los parámetros de situación (velocidad, rumbo, localización GPS) y la confi guración de sonar (ganancias, inclinación, ancho del haz). El objetivo de este proceso es el de maximizar la e ficiencia en la detección de atún en el Golfo de Vizcaya y dar el primer paso hacia el desarrollo de un índice de abundancia de esta especie, el cual esté basado en el procesamiento automático de las imágenes de sonar grabadas a bordo de la ota pesquera durante su actividad pesquera rutinaria.
Resumo:
El objetivo de este proyecto es evaluar la mejora de rendimiento que aporta la paralelización de algoritmos de procesamiento de imágenes, para su ejecución en una tarjeta gráfica. Para ello, una vez seleccionados los algoritmos a estudio, fueron desarrollados en lenguaje C++ bajo el paradigma secuencial. A continuación, tomando como base estas implementaciones, se paralelizaron siguiendo las directivas de la tecnología CUDA (Compute Unified Device Architecture) desarrollada por NVIDIA. Posteriormente, se desarrolló un interfaz gráfico de usuario en Visual C#, para una utilización más sencilla de la herramienta. Por último, se midió el rendimiento de cada uno de los algoritmos, en términos de tiempo de ejecución paralela y speedup, mediante el procesamiento de una serie de imágenes de distintos tamaños.---ABSTRACT---The aim of this Project is to evaluate the performance improvement provided by the parallelization of image processing algorithms, which will be executed on a graphics processing unit. In order to do this, once the algorithms to study were selected, each of them was developed in C++ under sequential paradigm. Then, based on these implementations, these algorithms were implemented using the compute unified device architecture (CUDA) programming model provided by NVIDIA. After that, a graphical user interface (GUI) was developed to increase application’s usability. Finally, performance of each algorithm was measured in terms of parallel execution time and speedup by processing a set of images of different sizes.
Resumo:
La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.
Resumo:
61 p.
Resumo:
Biomechanical problems in children, is an important subject currently, existing controversy in different areas, for example, the majority of children have a flattened footprint, or the hypermobility joint is linked to a musculoskeletal pain. The objective of the study was to determine what kind of footprint is most frequent in school-age children (8-10 years) in the area of Plasencia. This was taken as a sign 50 children, of whom 28 were males and 22 females. All the subjects in the study underwent an assessment of footprint planted in static as well as an exploration of different parameters through inspection in a standing position (formula digital, rearfoot). The results show that excavated footprint is present in a 72% cases of the population, 16% was belonging to an excavated footprint in which we find a higher percentage of weight related.For the digital formula we find that the most common is the Egyptian foot by 40% of the cases and that the prevalence in the rearfoot, is a normal hindfoot. In relation with the hypermobility joint, we check that it is more common in girls and that none of them presents an association to musculoskeletal pain. As a future line we could establish a more comprehensive study with new techniques and valuingchild’s statics and dynamics, to have a more accurate study of the different variables in the sample population studied.
Resumo:
[ES] Uno de los últimos avances en tecnología que más interés está despertando es la tecnología multitouch. Esta técnica ofrece una nueva forma de interacción hombre-máquina donde las aplicaciones gráficas son manejadas usando eventos táctiles. Esto abre la puerta a una comunicación más intuitiva y más directa entre el usuario y la máquina. Para lograr esto, son necesarios dos elementos: una superficie multitouch y una interfaz adaptada para el uso con eventos táctiles y objetos físicos que tendrán unos marcadores asignados. Con este proyecto buscamos desarrollar un dispositivo multitouch y un software para la creación de música digital mediante eventos táctiles y objetos. Para ello, es necesario investigar en distintos campos como son el del procesamiento de imágenes, hardware y desarrollo de aplicaciones e interfaces gráficas.
Resumo:
[ES] IPOL es una revista científica de procesamiento digital de imágenes y diversos métodos de análisis de imágenes. En cada publicación se incorpora una demo donde cualquier persona puede probar, vía web, el funcionamiento del método descrito en dicha publicación. De esta forma, se puede usar el método sin tener conocimiento de programación ni tener que instalarlo en su ordenador. En este proyecto fin de carrera se quiere desarrollar una aplicación que permita la ejecución de las demos desde un dispositivo móvil. Con ello, se pretende hacer más accesible la ejecución de algoritmo de procesamiento de imágenes y aumentar su divulgación científica.