1000 resultados para PRIMARY SUCCESSION
Resumo:
Vegetation attributes were consistent with the successional stage of each dome in the primary sere; however, the geomorphologic units did not follow the same pattern. The influence of the rates of plant colonization and soil formation are responsible for the decrease of the successional rates from footslopes, to summits, to slopes. The vegetation successionally changes from Juniperus scrub, to Juniperus wood and forest, and there is little species replacement since the similarity in species composition is high between the 3 domes.
Resumo:
Man-made wetlands are often created to compensate for the loss or degradation of natural wetlands, but little is known about the processes taking place in these artificial environments, especially at the community level. Throughout this thesis, we have assessed the phenomena of primary succession over different time (short-, mid- and long-term) and spatial scales (local, regional, interregional levels), applying different approaches (taxonomic and functional) and subject groups (invertebrates and amphibians). Our main findings regarding time scales show a 3-phase successional pattern in Mediterranean man-made wetlands’ communities, where at the short term (1 year) colonization processes dominate; at mid term perspectives (2 to 7 years) succession signs begin to be conspicuous, and later on (≥ 10 years) parameters such as species richness reach an asymptote. At that moment, some biological strategies dominate, and biodiversity surrogates indicate that communities are indistinct between man-made and natural wetlands. Regarding spatial effects, we corroborated that both local and regional factors affect the establishing communities. Particularly, the low hydrological stability of the Mediterranean region has enhanced biological traits favoring resilience and resistance to disturbances when comparing Mediterranean and cold temperate aquatic communities. Even within the Mediterranean region, low levels of hydrological stability have significant effects on the successional dynamics. In these cases, local communities are highly nested within regional natural ones, and so are not able to make net contributions to regional richness. We also showed the influence of the regional pool of recruiters over local communities, both in the case of invertebrates and amphibians. Especially for the latter group, man-made Mediterranean temporary ponds (MTPs) can play an important role in their conservation.
Resumo:
The transition from the Oldest Dryas to the Bølling around 14,685 cal yr BP was a period of extremely rapid climatic warming. From a single core of lake marl taken at Gerzensee (Switzerland) we studied the transition in stable isotopes of oxygen and carbon on bulk sediment and charophyte remains, as well as on monospecific samples of ostracods, after Pisidium a; in addition pollen, chironomids, and Cladocera were analyzed. The δ18O record serves as an estimate of mean air temperature, and by correlation to the one from NGRIP in Greenland it provides a timescale. The timing of responses: The statistically significant zone boundaries of the biostratigraphies are telescoped at the rapid increase of about 3‰ in δ18O at the onset of Bølling. Biotic responses may have occurred within sampling resolution (8 to 16 years), although younger zone boundaries are less synchronous. Gradual and longer-lasting responses include complex processes such as primary or secular succession. During the late-glacial interstadial of Bølling and Allerød, two stronger and two weaker cool phases were found. Biological processes involved in the responses occurred on levels of individuals (e.g. pollen productivity), of populations (increases or decreases, immigration, or extinction), and on the ecosystem level (species interactions such as facilitation or competition). Abiotic and biotic interactions include pedogenesis, nitrogen-fixation, nutrient cycling, catchment hydrology, water chemistry of the lake and albedo (controlled by the transition from tundra to forest). For the Swiss Plateau this major change in vegetation induced a change in the mammal fauna, which in turn led to changes in the tool-making by Paleolithic people.
Resumo:
A wild bee community in southern St. Catharines, Ontario, Canada, was studied from 2003 to 2012 to analyze the effects of primary succession on abundance and diversity. At a former landfill site near Brock University, which previously contained no bees, the number of bees and bee species was expected to increase rapidly following measures to restore the site to grassy meadow habitat. The Intermediate Disturbance Hypothesis (IDH) states that over time, succession occurs. Abundance and diversity increase initially and peak when pioneers coexist with specialized species, then decline because of competitive exclusion. Alternatively, abundance and diversity may continue to increase and stabilize without declining. Bees were sampled repeatedly among years from newer restoration sites (revegetated in 2003), older restoration sites on the periphery of the former landfill (revegetated in 2000), and nearby low disturbance grassy field (i.e. control) sites. In the newer sites, bee abundance and diversity increased then decreased while in older restoration and control sites mainly decreased. This pattern of succession matches the general predictions of the IDH, although declines were at least partially related to drought. By 2006, total bee abundance levels converged among all sites, indicating rapid colonization and succession, and by 2012 diversity levels were similar among sites as well, suggesting that the bee community was fully restored or nearly so within the ten-year study period.
Resumo:
Silene dioica is a diploid, dioecious, perennial, insect-pollinated herb and part of the deciduous phase of primary succession in Skeppsvik Archipelago, Gulf of Bothnia, Sweden. These islands are composed of material deposited and left underwater by melting ice at the end of the last ice age. A rapid and relatively constant rate of land uplift of 0.9 cm per year continually creates new islands available for colonization by plants. Because the higher deposits appear first, islands differ in age. Because it is possible to estimate the ages of islands and populations of plant species belonging to early stages of succession, the genetic dynamics occurring within an age-structured metapopulation can be investigated in this archipelago. Fifty-two island populations of S. dioica of known ages, sizes, and distances from each other were studied through electrophoretic data. A number of factors increase the degree of genetic differentiation among these island populations relative to an island model at equilibrium. Newly founded populations were more differentiated than those of intermediate age, which suggests that colonization dynamics increase genetic variance among populations. The very old populations, which decrease in size as they approach extinction, were more differentiated than intermediate-aged populations. Isolation by distance occurs in this system. Colonizers are likely to come from more than one source, and the migrant pool model best explains colonization events in the archipelago. Degree of environmental exposure also affects population differentiation.
Resumo:
The dynamics of the tree community and 30 tree populations were examined in an area of tropical semideciduous forest located on the margin of the Rio Grande, SE Brazil, based on surveys done in 1990 and 1997 in three 0.18 ha plots. The main purpose was to assess whether variations in dynamics were related to topography and the effects of a catastrophic flood in 1992. Rates of mortality and recruitment of trees and gain and loss of basal area in two topographic sites, lower (flooded) and upper (non-flooded), were obtained. Projected trajectories of mean and accelerated growth in diameter were obtained for each species. In both topographic sites, mortality rates surpassed recruitment rates, gain rates of basal area surpassed loss rates, and size distributions changed, with declining proportions of smaller trees. These overall changes were possibly related to increased underground water supply after the 1992 flood as well as to a c. 250-year-old process of primary succession on abandoned gold mines. Possible effects of the 1992 flood showed up in the higher proportions of dead trees in the flooded sites and faster growth rates in the flood-free sites. Species of different regeneration guilds showed particular trends with respect to their demographic changes and diameter growth patterns. Nevertheless, patterns of population dynamics differed between topographic sites for only two species.
Resumo:
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Questions Does the spatial association between isolated adult trees and understorey plants change along a gradient of sand dunes? Does this association depend on the life form of the understorey plant? Location Coastal sand dunes, southeast Brazil. Methods We recorded the occurrence of understorey plant species in 100 paired 0.25 m2 plots under adult trees and in adjacent treeless sites along an environmental gradient from beach to inland. Occurrence probabilities were modelled as a function of the fixed variables of the presence of a neighbour, distance from the seashore and life form, and a random variable, the block (i.e. the pair of plots). Generalized linear mixed models (GLMM) were fitted in a backward step-wise procedure using Akaike's information criterion (AIC) for model selection. Results The occurrence of understorey plants was affected by the presence of an adult tree neighbour, but the effect varied with the life form of the understorey species. Positive spatial association was found between isolated adult neighbour and young trees, whereas a negative association was found for shrubs. Moreover, a neutral association was found for lianas, whereas for herbs the effect of the presence of an adult neighbour ranged from neutral to negative, depended on the subgroup considered. The strength of the negative association with forbs increased with distance from the seashore. However, for the other life forms, the associational pattern with adult trees did not change along the gradient. Conclusions For most of the understorey life forms there is no evidence that the spatial association between isolated adult trees and understorey plants changes with the distance from the seashore, as predicted by the stress gradient hypothesis, a common hypothesis in the literature about facilitation in plant communities. Furthermore, the positive spatial association between isolated adult trees and young trees identified along the entire gradient studied indicates a positive feedback that explains the transition from open vegetation to forest in subtropical coastal dune environments.
Resumo:
The large, rapid increase in atmospheric N2O concentrations that occurred concurrent with the abrupt warming at the end of the Last Glacial period might have been the result of a reorganization in global biogeochemical cycles. To explore the sensitivity of nitrogen cycling in terrestrial ecosystems to abrupt warming, we combined a scenario of climate and vegetation composition change based on multiproxy data for the Oldest Dryas–Bølling abrupt warming event at Gerzensee, Switzerland, with a biogeochemical model that simulates terrestrial N uptake and release, including N2O emissions. As for many central European sites, the pollen record at the Gerzensee is remarkable for the abundant presence of the symbiotic nitrogen fixer Hippophaë rhamnoides (L.) during the abrupt warming that also marks the beginning of primary succession on immature glacial soils. Here we show that without additional nitrogen fixation, climate change results in a significant increase of N2O emissions of approximately factor 3.4 (from 6.4 ± 1.9 to 21.6 ± 5.9 mg N2O–N m− 2 yr− 1). Each additional 1000 mg m− 2 yr− 1 of nitrogen added to the ecosystem through N-fixation results in additional N2O emissions of 1.6 mg N2O–N m− 2 yr− 1 for the time with maximum H. rhamnoides coverage. Our results suggest that local reactions of emissions to abrupt climate change could have been considerably faster than the overall atmospheric concentration changes observed in polar ice. Nitrogen enrichment of soils due to the presence of symbiotic N-fixers during early primary succession not only facilitates the establishment of vegetation on soils in their initial stage of development, but can also have considerable influence on biogeochemical cycles and the release of reactive nitrogen trace gases to the atmosphere.
Resumo:
High-resolution pollen analyses made on the same samples on which the ratios of oxygen isotopes were measured that provided the time scale and a temperature proxy after correlation to NorthGRIP. (1) A primary succession: The vegetation responded to the rapid rise of temperatures around 14,685 yr BP, with a primary succession on a decadal to centennial time scale. The succession between ca 15,600 and 13,000 yr BP included: (1.1.) The replacement of shrub-tundra by woodland of Juniperus and tree birch (around 14,665 yr BP) (1.2.) The response of Juniperus pollen to the shift in oxygen isotopes in less than 20 yr, (1.3.) A sequence of population increases of Hippophaë rhamnoides (ca 14,600 yr BP), Salix spp. (ca 14,600 yr BP), Betula trees (ca.14,480 yr BP), Populus cf. tremula (ca. 14,300 yr BP), and Pinus cf. sylvestris (ca. 13,830 yr BP). (2) Biological processes: Plants responded to the rapid increase of summer temperatures on all organisational levels: (2.1) Individuals may have produced more pollen (e.g. Juniperus); (2.2) Populations increased or decreased (e.g. Juniperus, Betula, later Pinus), and (2.3) Populations changed their biogeographical range and may show migrational lags. (2.4) Plant communities changed in their composition because the species pools changed through immigration and (local) extinction. Some plant communities may have been without modern analogue.These mechanisms require increasing amounts of time. (2.5) Processes on the level of ecosystems, with species interactions, may involve various time scales. Besides competition and facilitation, nitrogen fixation is discussed. (3) The minor fluctuations of temperature during the Late-Glacial Interstadial, which are recorded in δ18O, resulted in only very minor changes in pollen during the Aegelsee Oscillation (Older Dryas biozone, GI-1d) and the Gerzensee Oscillation (GI-1b). (4) Biodiversity: The afforestation at the onset of Bølling coincided with a gradual increase of taxonomic diversity up to the time of the major Pinus expansion.
Resumo:
In the Arctic the currently observed rising air temperature results in more frequent calving of icebergs. The latter are derived from tidewater glaciers. Arctic macrozoobenthic soft-sediment communities are considerably disturbed by direct hits and sediment reallocation caused by iceberg scouring. With the aim to describe the primary succession of macrozoobenthic communities following these events, scientific divers installed 28 terracotta containers in the soft-sediment off Brandal (Kongsfjorden, Svalbard, Norway) at 20 m water depth in 2002. The containers were filled with a bentonite-sand-mixture resembling the natural sediment. Samples were taken annually between 2003 and 2007. A shift from pioneering species (e.g. Cumacea: Lamprops fuscatus) towards more specialized taxa, as well as from surface-detritivores towards subsurface-detritivores was observed. This is typical for an ecological succession following the facilitation and inhibition succession model. Similarity between experimental and non-manipulated communities from 2003 was significantly highest after three years of succession. In the following years similarity decreased, probably due to elevated temperatures, which prevented the fjord-system from freezing. Some organisms numerically important in the non-manipulated community (e.g., the polychaete Dipolydora quadrilobata) did not colonies the substrate during the experiment. This suggests that the community had not fully matured within the first three years. Later, the settlement was probably impeded by consequences of warming temperatures. This demonstrates the long-lasting effects of severe disturbances on Arctic macrozoobenthic communities. Furthermore, environmental changes, such as rising temperatures coupled with enhanced food availability due to an increasing frequency of ice-free days per year, may have a stronger effect on succession than exposure time.
Resumo:
ABSTRACT The analysis of changes in species composition and vegetation structure in chronosequences improves knowledge on the regeneration patterns following land abandonment in the Amazon. Here, the objective was to perform floristic-structural analysis in mature forests (with/without timber exploitation) and secondary successions (initial, intermediate and advanced vegetation regrowth) in the Tapajós region. The regrowth age and plot locations were determined using Landsat-5/Thematic Mapper images (1984-2012). For floristic analysis, we determined the sample sufficiency and the Shannon-Weaver (H'), Pielou evenness (J), Value of Importance (VI) and Fisher's alpha (α) indices. We applied the Non-metric Multidimensional Scaling (NMDS) for similarity ordination. For structural analysis, the diameter at the breast height (DBH), total tree height (Ht), basal area (BA) and the aboveground biomass (AGB) were obtained. We inspected the differences in floristic-structural attributes using Tukey and Kolmogorov-Smirnov tests. The results showed an increase in the H', J and α indices from initial regrowth to mature forests of the order of 47%, 33% and 91%, respectively. The advanced regrowth had more species in common with the intermediate stage than with the mature forest. Statistically significant differences between initial and intermediate stages (p<0.05) were observed for DBH, BA and Ht. The recovery of carbon stocks showed an AGB variation from 14.97 t ha-1 (initial regrowth) to 321.47 t ha-1 (mature forests). In addition to AGB, Ht was also important to discriminate the typologies.