Counts and abundance of macrozoobenthic organisms settled in artificial soft sediment at Brandal, Kongsfjorden, Spitsbergen


Autoria(s): Nowak, Christopher A; Laudien, Jürgen; Sahade, Ricardo J
Cobertura

LATITUDE: 78.947800 * LONGITUDE: 11.852650 * DATE/TIME START: 2003-06-17T00:00:00 * DATE/TIME END: 2007-09-04T00:00:00

Data(s)

14/04/2016

Resumo

In the Arctic the currently observed rising air temperature results in more frequent calving of icebergs. The latter are derived from tidewater glaciers. Arctic macrozoobenthic soft-sediment communities are considerably disturbed by direct hits and sediment reallocation caused by iceberg scouring. With the aim to describe the primary succession of macrozoobenthic communities following these events, scientific divers installed 28 terracotta containers in the soft-sediment off Brandal (Kongsfjorden, Svalbard, Norway) at 20 m water depth in 2002. The containers were filled with a bentonite-sand-mixture resembling the natural sediment. Samples were taken annually between 2003 and 2007. A shift from pioneering species (e.g. Cumacea: Lamprops fuscatus) towards more specialized taxa, as well as from surface-detritivores towards subsurface-detritivores was observed. This is typical for an ecological succession following the facilitation and inhibition succession model. Similarity between experimental and non-manipulated communities from 2003 was significantly highest after three years of succession. In the following years similarity decreased, probably due to elevated temperatures, which prevented the fjord-system from freezing. Some organisms numerically important in the non-manipulated community (e.g., the polychaete Dipolydora quadrilobata) did not colonies the substrate during the experiment. This suggests that the community had not fully matured within the first three years. Later, the settlement was probably impeded by consequences of warming temperatures. This demonstrates the long-lasting effects of severe disturbances on Arctic macrozoobenthic communities. Furthermore, environmental changes, such as rising temperatures coupled with enhanced food availability due to an increasing frequency of ice-free days per year, may have a stronger effect on succession than exposure time.

Formato

application/zip, 2 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.859583

doi:10.1594/PANGAEA.859583

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Nowak, Christopher A; Laudien, Jürgen; Sahade, Ricardo J (2016): Rising temperatures and sea ice-free winters affect the succession of Arctic macrozoobenthic soft-sediment communities (Kongsfjorden, Svalbard). Polar Biology, online first, 17 pp, doi:10.1007/s00300-016-1995-x

Palavras-Chave #A. acutifrons; A. cf. baltica; A. cirrata; A. crenata; A. finmarchica; A. groenlandica; A. orbiculata; A. suecica; A. websteri; Ampharete acutifrons; Ampharete cf. baltica; Ampharete finmarchica; Amphitrite cirrata; Anaitides groenlandica; Aricidea suecica; Astarte crenata; Autonoe websteri; Axinopsida orbiculata; B. villosa; Boeck, 1871; Brada villosa; Brown, 1827; Bruguiere, 1789; Bruzelius, 1859; C. alba; C. capitata; C. caudata; C. crassicorne; C. decussata; C. fauveli; C. laevis; C. pumilus; C. septentrionalis; C. setosa; Candona caudata; Capitella capitata; Caprella septentrionalis; Centromedon pumilus; Chaetozone setosa; Chiridota laevis; Chone fauveli; Clark, 1911; Crassicorophium crassicorne; Crenella decussata; Cylichna alba; D. pygmaeus; D. quadrilobata; Danielssen, 1890; Date/Time; DATE/TIME; Depth; DEPTH, sediment/rock; Dipolydora quadrilobata; Dysponetus pygmaeus; E. analis; E. fusca; E. gaimardii; E. longa; E. spetsbergensis; Edwardsia fusca; Eliasen, 1920; Eliason, 1955; Eteone longa; Eteone spetsbergensis; Eualus gaimardii; Euchone analis; Exposition time; Exp time; Fabricius, 1780; Forbes & Goodsir, 1841; G. capitata; G.O. Sars, 1878; Glycera capitata; Gmelin, 1790; Gould, 1841; Gray, 1824; Grube, 1860; Grube, 1863; H. arctica; H. concinna; H. glacialis; H. longisetis; Harmothoe longisetis; Heliometra glacialis; Hemicythere concinna; Hiatella arctica; Jacobi, 1883; Johnston, 1840; Kaufmann, 1900; Krøyer, 1838; Krøyer, 1846; Krøyer, 1865; L. fluctuosa; L. fragilis; L. fuscatus; L. labiata; Label; Lamarck, 1816; Lamprops fuscatus; Levinsen, 1879; Lilljeborg, 1865; Linne, 1758; Linne, 1767; Liocyma fluctuosa; Lumbrineris fragilis; Lysippe labiata; M. borealis; M. calcarea; M. costalis; M. helicinus; M.Sars, 1864; M. sarsi; M. truncata; Macoma calcarea; Maldane sarsi; Malmgren, 1865; Malmgren, 1866; Malmgren, 1867; Margarites costalis; Margarites helicinus; McIntosh, 1916; Method; Method comment; Milne Edwards, 1837; Monoculodes borealis; Montagu, 1803; Montagu, 1808; Mya truncata; N. ciliata; N. despecta; Nephtys ciliata; Neptunea despecta; O. acuminata; O. cosmetandra; O.F. Müller, 1766; O.F. Müller, 1771; O.F. Müller, 1776; O. Fabricius, 1780; O. mighelsi; Oersted, 1842; Oersted, 1843; Onoba mighelsi; Ophelina acuminata; Ophryotrocha cosmetandra; Oug, 1990; Owen, 1833; P. caudatus; P. corrugata; P. lynceus; P. minuta; P. praetermissa; P. pubescens; Pagurus pubescens; Paroediceros lynceus; Pelonaia corrugata; Phipps, 1774; Pholoe minuta; Pot No.; Praxilla praetermissa; Priapulus caudatus; R. obtusa; Rathke, 1843; Retusa obtusa; S. armata; S. armiger; S. borealis; S. boreas; S. brachyactis; S. groenlandicus; S. inflatum; S. nodulosa; Sabellides borealis; Sample code/label; Sars, 1856; Sars, 1858; Sars, 1865; Sars, 1894; Sars, 1925; Scalibregma inflatum; Sclerocrangon boreas; Scoloplos armiger; Serripes groenlandicus; Spio armata; Stegophiura brachyactis; Stimpson, 1851; Synidotea nodulosa; T. forbesii; Thulin, 1957; Travisia forbesii
Tipo

Dataset