996 resultados para PRENATAL STRESS
Resumo:
Prenatal stress, rodent, limbic system, neuronal development, dendritic spines, sex difference
Resumo:
There is strong evidence from animal studies that prenatal stress has different effects on male and female offspring. In general, although not always, prenatal stress increases anxiety, depression and stress responses, both hypothalamic–pituitary–adrenal and cardiovascular, in female offspring rather than in male. Males are more likely to show learning and memory deficits. There have been few studies so far in humans which differentiate effects of prenatal stress on male and female psychopathology. Some studies support the animal models, but the evidence is inconsistent. The mediating mechanisms for any sex specific effects are little understood, but there is evidence that placental function can differ depending on the sex of the fetus. We suggest that there may be an evolutionary reason for any sex differences in the long term effects of prenatal stress. In a stressful environment it may be adaptive for females, who are more likely to stay in one place and look after children, to be more vigilant, alert to danger and thus show more stress responsiveness. This can give rise to a more anxious or depressed phenotype. With males it may be more adaptive to go out and explore new environments, compete with other males, and be more aggressive. For this it may help to be less responsive to external stressors. More research is needed into sex differences in the effects of prenatal stress in humans, to test these ideas.
Could neonatal testosterone replacement prevent alterations induced by prenatal stress in male rats?
Resumo:
The present study was designed to examine whether testosterone replacement is able to prevent some effects of maternal restraint stress during the period of brain sexual differentiation - on endocrine system and sexual behavior in male rat descendants. Pregnant rats were exposed to restraint stress for 1 h/day from gestational days 18 to 22. At birth, some male pups from these stressed rats received testosterone propionate. The neonatal testosterone replacement was able to prevent the reduction in anogenital distance at 22 days of age observed in pups from stressed pregnant rats as well as prevents the decrease in testosterone levels during the adulthood of these animals. Testosterone replacement in these males also presented an improvement in sexual performance. In this way, testosterone replacement probably through increasing neonatal level of this hormone was able to prevent the later alterations caused by the prenatal stress during the period of brain sexual differentiation. (c) 2005 Published by Elsevier B.V.
Resumo:
The effects of chronic mild prenatal stress on leukocyte infiltration into the airways was investigated in rat offspring. The chronic prenatal stress consisted of transitory and variable changes in the rat's living conditions. Offspring at adult age were actively sensitized (day 0) and intratracheally challenged (day 14) with ovalbumin. Bronchoalveolar lavage was performed in the offspring at 48 h after intratracheal challenge with ovalbumin. A significant increase in total leukocyte infiltration was observed in the non-stressed offspring group and this was associated with a marked recruitment of eosinophils without a significant effect on the influx of neutrophils and mononuclear cells. In the prenatal stressed offspring, the counts of both total leukocyte and eosinophils, as well as mononuclear cells, was increased by 50% compared to the non-stressed offspring. We provide here the first experimental evidence that chronic mild unpredictable prenatal stress produces a marked increase in the allergen-induced airway inflammation in the rat offspring.
Resumo:
Early experiences such as prenatal stress significantly influence the development of the brain and the organization of behavior. In particular, prenatal stress impairs memory processes but the mechanism for this effect is not known. Hippocampal granule neurons are generated throughout life and are involved in hippocampal-dependent learning. Here, we report that prenatal stress in rats induced lifespan reduction of neurogenesis in the dentate gyrus and produced impairment in hippocampal-related spatial tasks. Prenatal stress blocked the increase of learning-induced neurogenesis. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for psychopathological vulnerabilities in aging.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Early stimulation has been shown to produce long-lasting effects in many species. Prenatal exposure to some strong stressors may affect development of the nervous system leading to behavioral impairment in adult life. The purpose of the present work was to study the postnatal harmful effects of exposure to variable mild stresses in rats during pregnancy. Female Holtzman rats were submitted daily to one session of a chronic variable stress (CVS) during pregnancy (prenatal stress; PS group). Control pregnant rats (C group) were undisturbed. The pups of PS and C dams were weighed and separated into two groups 48 h after delivery. One group was maintained with their own dams (PS group, N = 70; C group, N = 36) while the other PS pups were cross-fostered with C dams (PSF group, N = 47) and the other C pups were cross-fostered with PS dams (CF group, N = 58). Pups were undisturbed until weaning (postnatal day 28). The male offspring underwent motor activity tests (day 28), enriched environment tests (day 37) and social interaction tests (day 42) in an animal activity monitor. Body weight was recorded on days 2, 28 and 60. The PS pups showed lower birth weight than C pups (Duncan's test, P<0.05). The PS pups suckling with their stressed mothers displayed greater preweaning mortality (C: 23%, PS: 60%; c2 test, P<0.05) and lower body weight than controls at days 28 and 60 (Duncan's test, P<0.05 and P<0.01, respectively). The PS, PSF and CF groups showed lower motor activity scores than controls when tested at day 28 (Duncan's test, P<0.01 for PS group and P<0.05 for CF and PSF groups). In the enriched environment test performed on day 37, between-group differences in total motor activity were not detected; however, the PS, CF and PSF groups displayed less exploration time than controls (Duncan's test, P<0.05). Only the PS group showed impaired motor activity and impaired social behavior at day 42 (Duncan's test, P<0.05). In fact, CVS treatment during gestation plus suckling with a previously stressed mother caused long-lasting physical and behavioral changes in rats. Cross-fostering PS-exposed pups to a dam which was not submitted to stress counteracted most of the harmful effects of the treatment. It is probable that prenatal stress plus suckling from a previously stressed mother can induce long-lasting changes in the neurotransmitter systems involved in emotional regulation. Further experiments using neurochemical and pharmacological approaches would be interesting in this model.
Resumo:
Studies on environmental consequences of stress on animal production have grown substantially in the last few years for economic and animal welfare reasons. Physiological, hormonal, and immunological deficits as well as increases in animals` susceptibility to diseases have been reported after different stressors in broiler chickens. The aim of the current experiment is to describe the effects of 2 different heat stressors (31 +/- 1 and 36 +/- 1 degrees C/10 h per d) applied to broiler chickens from d 35 to 42 of life on the corticosterone serum levels, performance parameters, intestinal histology, and peritoneal macrophage activity, correlating and discussing the obtained data under a neuroimmune perspective. In our study, we demonstrated that heat stress (31 +/- 1 and 36 +/- 1 degrees C) increased the corticosterone serum levels and decreased BW gain and food intake. Only chickens submitted to 36 +/- 1 degrees C, however, presented a decrease in feed conversion and increased mortality. We also showed a decrease of bursa of Fabricius (31 +/- 1 and 36 +/- 1 degrees C), thymus (36 +/- 1 degrees C), and spleen (36 +/- 1 degrees C) relative weights and of macrophage basal (31 +/- 1 and 36 +/- 1 degrees C) and Staphylococcus aureus-induced oxidative burst (31 +/- 1 degrees C). Finally, mild multifocal acute enteritis characterized by an increased presence of lymphocytes and plasmocytes within the jejunum`s lamina propria was also observed. The stress-induced hypothalamic-pituitary-adrenal axis activation was taken as responsible for the negative effects observed on the chickens` performance and immune function and also the changes of the intestinal mucosa. The present obtained data corroborate with others in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.
Resumo:
Objective: This study investigates the effects of prenatal lipopolysaccharide (LPS) exposure on the maternal behavior of pregnant rats and the physical development and sexual behavior of their male offspring in adulthood. Methods: For two experiments, pregnant rats were injected with LPS (250 mu g/kg, i.p.) on gestation day (GD) 21. In the first experiment, the maternal behavior (postnatal day, PND, 6) and the dam`s open-field general activity (PND7) were evaluated. In the second experiment, the maternal pre- and postnatal parameters, the pup`s development, the offspring`s sexual behavior in adulthood, and the pup`s organ weights were assessed. Results: Compared to the control group, the LPS-treated dams presented reduced maternal behavior, decreased general activity, a smaller body weight difference between GD21 and PND1, a greater number of perinatal deaths, and smaller litters. For the male pups, LPS treatment resulted in a decreased body weight on PND2, whereas the anogenital distance and the day of testis descent were not modified. The male sexual behavior was impaired by prenatal LPS. Particularly the number of ejaculating animals was reduced. The testis weight was also lower in the prenatally LPS-treated rats than in the control rats. Conclusion: We propose that prenatal LPS exposure on GD21 acts as an imprinting factor that interferes with the programming of brain sexual determination in offspring. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
This article presents the Antenatal Perceived Stress Inventory. The originality of this scale is to assess the impact of events experienced during pregnancy on the stress perceived by mothers. Scale validation was performed using data from 150 French-speaking nulliparous mothers and collected between 36 and 39 weeks of gestation (T1), and between 2 days (T2) and 6 weeks postpartum (T3). Factor analysis revealed a hierarchical three-factor structure that closely fit the data, including medical and obstetric risks/fetal health (F1), psychosocial changes (F2), and the prospect of childbirth (F3). The Antenatal Perceived Stress Inventory is a valid French prenatal stress scale with good psychometric properties.
Resumo:
The GABAergic system modulates respiratory activity and undergoes substantial changes during early life. Because this maturation process is sensitive to stress, we tested the hypothesis that gestational stress (GS) alters development of GABAergic modulation of respiratory control in rat pups. The respiratory responses to the selective GABAA receptor agonist muscimol were compared between pups born to dams subjected to GS (bright light and predator odor; 20 min/day from G9 to G19) or maintained under standard (control) conditions. Respiratory activity was measured on 1 and 4 days old pups of both sexes using in vivo (whole body plethysmography) and in vitro (isolated brainstem-spinal cord preparation) approaches. In intact pups, muscimol injection (0.75 mg/kg; i.p.) depressed minute ventilation; this response was less in GS pups, and at P4, muscimol augmented minute ventilation in GS females. Bath application of muscimol (0.01-0.5 μM) onto brainstem preparations decreased inspiratory (C4) burst frequency and amplitude in a dose-dependent manner; the responsiveness decreased with age. However, GS had limited effects on these results. We conclude that the results obtained in vivo are consistent with our hypothesis and show that GS delays maturation of GABAergic modulation of respiratory activity. The differences in the results observed between experimental approaches (in vivo versus in vitro) indicate that the effect of prenatal stress on maturation of GABAergic modulation of respiratory control mainly affects the peripheral/metabolic components of the respiratory control system.
Resumo:
Animal studies find that prenatal stress is associated with increased physiological and emotional reactivity later in life, mediated via fetal programming of the HPA axis through decreased glucocorticoid receptor (GR) gene expression. Post-natal behaviours, notably licking and grooming in rats, cause decreased behavioural indices of fear and reduced HPA axis reactivity mediated via increased GR gene expression. Post-natal maternal behaviours may therefore be expected to modify prenatal effects, but this has not previously been examined in humans. We examined whether, according to self-report, maternal stroking over the first weeks of life modified associations between prenatal depression and physiological and behavioral outcomes in infancy, hence mimicking effects of rodent licking and grooming. From a general population sample of 1233 first time mothers recruited at 20 weeks gestation we drew a stratified random sample of 316 for assessment at 32 weeks based on reported inter-partner psychological abuse, a risk to child development. Of these 271 provided data at 5, 9 and 29 weeks post delivery. Mothers reported how often they stroked their babies at 5 and 9 weeks. At 29 weeks vagal withdrawal to a stressor, a measure of physiological adaptability, and maternal reported negative emotionality were assessed. There was a significant interaction between prenatal depression and maternal stroking in the prediction of vagal reactivity to a stressor (p = .01), and maternal reports of infant anger proneness (p = .007) and fear (p = .043). Increasing maternal depression was associated with decreasing physiological adaptability, and with increasing negative emotionality, only in the presence of low maternal stroking. These initial findings in humans indicate that maternal stroking in infancy, as reported by mothers, has effects strongly resembling the effects of observed maternal behaviours in animals, pointing to future studies of the epigenetic, physiological and behavioral effects of maternal stroking.
Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress
Resumo:
The present study was designed to examine some short- and long-term effects of maternal restraint stress-during the period of sexual brain differentiation-on reproductive and endocrine systems, sexual behavior, and brain neurotransmitters in male rat descendants. Pregnant rats were exposed to restraint stress for 1 h/day from gestational days (GDs) 18 to 22. Prenatal stress did not influence the wet weight of sexual organs and the quantity of germ cells in adult male pups; however, these animals showed reduced testosterone levels, delayed latency to the first mount and first intromission, and also decreased number of ejaculations. Additionally, there was an increase in the dopamine and serotonin levels in the striatum. Our results indicate that prenatal stress had a long-term effect on neurotransmitter levels and sexual behavior. In this sense, reproductive problems caused by injuries during the fetal period can compromise the later success of mating as well as the capacity to generate descendants. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Stressful situations reduce the welfare, production indices and immune status of chickens. Salmonella spp. are a major zoonotic pathogens that annually cause over 1 billion infections worldwide. We therefore designed the current experiment to analyse the effects of 31 +/- 1 degrees C heat stress (HS) (from 35 to 41 days) on performance parameters, Salmonella invasion and small intestine integrity in broiler chickens infected with Salmonella Enteritidis. We observed that HS decreased body weight gain and feed intake. However, feed conversion was only increased when HS was combined with Salmonella Enteritidis infection. In addition, we observed an increase in serum corticosterone levels in all of the birds that were subjected to HS, showing a hypothalamus-pituitary-adrenal axis activation. Furthermore, mild acute multifocal lymphoplasmacytic enteritis, characterized by foci of heterophil infiltration in the duodenum, jejunum and ileum, was observed in the HS group. In contrast, similar but more evident enteritis was noted in the heat-stressed and Salmonella-infected group. In this group, moderate enteritis was observed in all parts of the small intestine. Lastly, we observed an increase in Salmonella counts in the spleens of the stressed and Salmonella-infected chickens. The combination of HS and Salmonella Enteritidis infection may therefore disrupt the intestinal barrier, which would allow pathogenic bacteria to migrate through the intestinal mucosa to the spleen and generate an inflammatory infiltrate in the gut, decreasing performance parameters.