997 resultados para POTENTIAL SWEEP VOLTAMMETRY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclic voltammetry has become one of the most useful tools in modern electrochemistry, but the use of digital potentiostats should be treated with caution by users. Staircase Voltammetry utilizes some parameters to build up the potential ramp. However, for some electrochemical processes, the signal response can be different compared with that acquired using true linear sweep (analogic signal). In this work, the role of SCV parameters in current response during the hydrogen electrochemical adsorption/desorption reaction on a platinum surface was studied. In addition, the transient current in each step comprising the ramp was investigated. The results showed that with a step height of 2 mV, the SCV response matches that recorded by linear sweep voltammetry. From the transient current study, two kinds of capacity were identified: non-faradaic and faradaic charge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The processes involved in the Se electrodeposition, mainly the one related to the formation of H2Se species on Au electrode in perchloric acid solutions, have been investigated through cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), rotating ring-disc electrode (RRDE), and atomic force microscopy (AFM) techniques. In the experiments performed with the EQCM, with the potential sweep in the negative direction, the responses for the mass variation were divided in three well-defined potential regions: A (from 1.55 to 0.35 V), B (from 0.35 to -0.37 V), and C (from -0.37 to -0.49 V). It was verified that the following processes can occur, respectively: the species (AuO)(2)H2SeO3 was desorbed during the AuO reduction, the reduction of Se(IV) to Se(0), and the formation of H2Se. When the potential was swept in the positive direction, the responses for the mass variation were divided in four well-defined potential regions: D (from -0.49 to 0.66 V), E (from 0.66 to 0.99 V), F (from 0.99 to 1.26 V), and G (from 1.26 to 1.55 V), and the described processes in these regions were, respectively: the Se deposition and adsorption of water molecules and/or perchlorate ions, the Se dissolution, the Se incorporating mass in the form of HO-Se, and the Au oxidation (all potentials are referred to the Ag/AgCl electrode). Making use of the RRDE, using the collection technique, the formation of H2Se species during the Se electrodeposition was investigated. Therefore, it was confirmed that this species is formed on the disc electrode between -0.3 and -0.55 V vs the Ag/AgCl potential range (collecting the oxidized compound onto the ring electrode). AFM images also indicated that the surface topography of the Se-massive deposit on Au is different from the images registered after the formation of H2Se species, confirming the cathodic stripping of Se.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrochemical behavior of the annealed Cu-5wt.%Ni alloy in 0.5 M H2SO4 was studied by means of open-circuit potential (E-OCP) measurements, cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and quasi-stationary linear potential sweep. The hydrodynamics of the system was also studied. This material is constituted by a single a, phase. The anodic behavior of a Cu-Ni alloy in H2SO4 consists fundamentally on the electrodissolution of Cu, its main component, and the formation of a sulfur-containing passive layer. The presence of Ni decreases the rate of Cu oxidation, mostly at high positive potentials. The impedance spectra, obtained for the unrotating electrode, can be interpreted in terms of a simple charge-transfer reaction across a surface layer. When the electrode is rotated, the occurrence of an inductive loop evidenced the existence of an adsorbed layer. All the resistance estimated from the proposed equivalent circuits diminished with the electrode rotation rate, emphasizing the influence of ion transport in the overall electrode process. The system presented two anodic Tafel slopes: 40 mV dec(-1) for E < 255 mV and 67 mV dec(-1) for E > 275 mV. A Tafel slope of 40 mV dec(-1) evidences that copper dissolution can be interpreted in terms of the mechanism proposed by Mattsson and Bockris. The second Tafel suggests that at potentials more positive than 275 mV, copper dissolves according to a mechanism that considers the disproportionation of adsorbed Cu(1) species. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Pt-Ru/C materials of this study were prepared by a microemulsion method with fixed water to surfactant molar ratio and heat treated at low temperatures, to avoid changes in the average particle size, in different atmospheres. All samples were characterized by X-ray diffraction (XRD) and the mean crystallite size was estimated by using Scherrer's equation. Catalysts morphology was characterized by transmission electron microscopy (TEM). Average composition was obtained by energydispersive X-ray analysis (EDX). The general electrochemical behavior was evaluated by cyclic voltammetry in 0.5 M sulfuric acid and the electrocatalytic activity towards the oxidation of methanol was studied in 0.5 M methanol acid solutions by potential sweeps and chronoamperometry. Oxidation of adsorbed CO was used to estimate the electrochemical active area and to infer the surface properties. ©The Electrochemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work describes the characterization of the [Mn2 IV,IVO2(terpy)2(H2O)2]4+ complex in aqueous solution by UV-vis spectrophotometry, cyclic voltammetry, and linear sweep voltammetry with a rotating disk electrode. The pH effect, potential scan rate, effect of perfluorosulfonate polymer, and anion of supporting electrode on the electrochemical behavior of the modified electrode for better performance were investigated. The potential peak of the modified electrode was linearly dependent upon the ratio [ionic charge]/[ionic radius]. The modified electrode exerted an electrocatalytic effect on dopamine oxidation in aqueous solution with a decrease in the overpotential compared with the unmodified glassy carbon electrode. This way, the modified electrode showed an enzymatic biomimicking behavior. Tafel plot analyses were used to elucidate the kinetics and mechanism of dopamine oxidation. © 2013 Springer Science+Business Media New York.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrochemical behaviour of copper in 6.0 mol 1-1 sulfuric acid at 30°C, was studied by means of the potentiodynamic method. At low potential sweep rates, v < 200 m V s-1, the data reveal that the anodic process is basically constituted of copper dissolution and a film formation which inhibits further metal oxidation and which may undergo further dissolution. For higher potential sweep rates, a modification in the passivation region of the voltammogram is observed. It can be ascribed to a change in the passivation mechanism which possibly involves different surface species. The kineticrelationships derived from the potentiodynamic I/E curves obtained at low v suggest a film formation via a dissolution/precipitation mechanism. © 1993.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We address in this paper a voltammetric study of the charge transfer processes characteristic of Pt(1 0 0) and vicinal surfaces in alkaline media. The electrochemical behavior of a series of stepped surfaces of the type Pt(S)[n(1 0 0) × (1 1 1)] has been characterized using cyclic voltammetry at different pHs, charge displacement measurements and FTIR experiments for adsorbed CO. The results from these techniques allow assigning the different peaks appearing in the voltammogram to hydrogen and/or OH adsorption on the different sites of these surfaces, namely, terrace and step sites. Additionally, the potential of zero total charge (pztc) of the electrodes was determined. The resulting pztc values shift to more negative values when the step density increases on the surface up to n = 5. FTIR spectroscopy experiments have been used to monitor the adsorption of CO on the different surfaces as well as the consequent CO oxidation, accompanying a positive potential sweep. The oxidation of adsorbed CO on (1 0 0) terraces is catalyzed by the presence of the (1 1 1) steps. The FTIR spectra revealed that CO is mostly bonded in bridge configuration at low potentials interconverting to on-top when the electrode potential is increased.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The preparation of structured catalysts active in the catalytic partial oxidation of methane to syngas, was performed by electrosynthesis of hydroxides on FeCrAlloy foams and fibers. Rh/Mg/Al hydrotalcite-type compounds were prepared by co-precipitation of metallic cations on the support and successive calcination. Electrochemical reactions have been studied during the electrodeposition by linear sweep voltammetry. The experiments were performed at supports immersed in KNO3, KCl, Mg2+ and Al3+ aqueous solutions, starting by different precursors (nitrate and chlorides salts) and modifying the Mg/A ratio. Rh/Mg/Al hydrotalcite-type compounds were deposited on metal foams by applying a -1.2V vs SCE potential for 2000s with a nitrate solution of 0.06M total metal concentration. Firstly it was studied the effect of Mg on the coating propierties, modifying the Rh/Mg/Al atomic ratio (5/70/25, 5/50/45, 5/25/70 e 5/0/95). Then the effect of the amount of Rh was later investigated in the sample with the largest Mg content (Rh/Mg/Al = 5/70/25 and 2/70/28).The results showed that magnesium allowed obtaining the most homogeneous and well adherent coatings, wherein rhodium was well dispersed. The sample with the Rh/Mg /Al ratio equal to5/70/25 showed the best catalytic performances. Decreasing the Rh content, the properties of the coating were not modified, but the catalytic activity was lower, due to a not enough number of active sites to convert the methane. The work on metal fibers focused on the effect of precursor concentration, keeping constant composition, potential and synthesis time at the values of Rh/Mg/Al =5/70/25, -1.2V vs SCE and 1000s. However fibers geometry did not allow to obtain a high quality coating, even if results were quite promising.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artigo licenciado sob uma Licença Creative Commons: https://creativecommons.org/licenses/by/4.0/