984 resultados para POLYAMIDE-1010


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanocomposites of polyamide1010 (PA1010) filled with carbon nanotubes (CNTs) were prepared by melt mixing techniques. The isothermal melt-crystallization kinetics and nonisothermal crystallization behavior of CNTs/PA1010 nanocomposites were investigated by differential scanning calorimetry. The peak temperature, melting point, half-time of crystallization, enthalpy of crystallization, etc. were measured. Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The isothermal crystallization was also described according to Avrami's approach. It has been shown that the addition of CNTs causes a remarkable increase in the overall crystallization rate of PA1010 and affects the mechanism of nucleation and growth of PA1010 crystals. The analysis of kinetic data according to nucleation theories shows that the increment in crystallization rate of CNTs/PA1010 composites results from the decrease in lateral surface free energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel side-chain, liquid-crystalline ionomer (SLCI) with a poly(methyl hydrosiloxane) main chain and side chains containing sulfonic acid groups was used in blends of polyamide-1010 (PA1010) and polypropylene (PP) as a compatibilizer. The morphological structure, thermal behavior, and liquid-crystalline properties of the blends were investigated by Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The morphological structure of the interface of the blends containing SLCI was improved with respect to the blend without SLCI. The compatibilization effect of greater than 8 wt % SLCI for the two phases, PA1010 and PP, was better than the effects of other SLCI contents in the blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and thermal properties of polyamide-1010 (PA1010), treated at 250degreesC for 30 min under pressures of 0.7-2.5 GPa, were studied with wide-angle X-ray diffraction (WAXD), infrared (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Crystals were formed when the pressures were less than 1.0 GPa or greater than 1.2 GPa. With increasing pressure, the intensity of the diffraction peak at approximately 24degrees was enhanced, whereas the peak at approximately 20degrees was depressed. The triclinic crystal structure of PA1010 was preserved. The highest melting temperature of the crystals obtained in this work was 208degreesC for PA1010 treated at 1.5 GPa. Crosslinking occurred under pressures of 1.0-1.2 GPa. Only a broad diffraction peak centered at approximately 20degrees was observed on WAXD patterns, and no melting and crystallization peaks were found on DSC curves. IR spectra of crosslinked PA1010 showed a remarkable absorption band at 1370 cm(-1). The N-H stretching vibration band at 3305 cm(-1) was weakened. Crystallized PA1010 had a higher thermal stability than crosslinked PA1010, as indicated on TGA curves by a higher onset temperature of decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization, dynamic mechanical properties, tensile properties and morphology features of polyamidel 1010(PA1010) blends with the high impact polystyrere (HIPS) and maleic anhydride (MA) grafted HIPS(HIPS-g-MA) were examined at a wide composition range. By comparison the PA1010/HIPS-g-MA and PA1010/HIPS binary blends, it was found that the size of the domains of HIPS-g-MA was much smaller than that of HIPS at the same compositions. It was found that the mechanical properties of PA1010/HIPS-g-MA blends were obviously higher than those of PA1010/HIPS blends. When the content of PA1010 is more than 50wt% in the blends, the crystallization temperatures, T-cs, of PA1010 increase with increasing the content of HIPS-g-MA. On the other hand, when the content of PA1010 in the blends is less than 35wt% the fraction crystallization is observed. The same result is not obtained for the blends of PA1010/HIPS. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/HIPS-g-MA blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aimed at saving the radiation dose required to crosslinking the polyamid-1010, BMI/PA1010 systems containing different amounts of difunctional crosslinking agent N,N'-bis-maleimide-4,4'-biphenyl methane (BMI) were prepared and the structure changes at the crystallographic and supermolecular levels before and after irradiation were studied by using WAXD, SAXS, and DSC techniques. It was found that by incorporation of BMI the microcrystal size L-100 is lowered due to the formation of hydrogen bond between the carbonyl oxygen of BMI and the amide hydrogen of PA1010 in the hydrogen bonded plane, and the overall crystallinity W-c is also decreased. The presence of BMI causes the crystal lamella thickness d(c) to decrease and greatly thickens the transition zone d(tr) between the crystalline and amorphous regions. As for the irradiated specimen, the maximum increments in the L-100 and W-c against dose curves decrease with BMI content, and the interception point D-i, at which the L-100 and W-c curves intercept their respective horizontal line of L-100/L-100(0) and W-c/W-c(0)=1, shift to lower dose with an increase in BMI concentration. In addition. the mechanism of the radiation chemical reactions in the three different phases under the action of BMI are discussed with special focus on the interface region. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interface behavior of polyamide 1010 (PA1010) and polypropylene (PP) was studied. In order to improve their interfacial adhesion, functional PP was prepared by means of grafting glycidyl methacrylate (GMA) on PP main chains and used instead of plain PP. Several technological characterizations were performed here on their interfaces. ESCA was used to confirm that some kind of reaction occurred between end groups of PA1010 and epoxy species of PP-g-GMA. The peel test was adopted to measure interfacial adhesion. It was found that the fracture energy of interfaces between PA1010 and PP-g-GMA was dramatically increased with the content of GMA. Their interfaces were observed as being blurred by using SEM and TEM and a crack that could be seen in the case of the interfaces of the PA1010 and the plain PP disappeared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binary blends of polyamide 1010/poly(propylene) and polyamide 1010 (PA1010)/poly(propylene)-graft-(glycidyl methacrylate) (PP-g-GMA) were prepared. The epoxy groups in PP-g-GMA react with the amino end-groups in PA1010, thus a PA1010-graft-PP copolymer is formed and acts as a compatibilizer between PA1010 and PP-g-GMA. The reaction was confirmed by electron spectroscopy for chemical analysis (ESCA) and attenuated total reflection (ATR)-FTIR spectroscopic analysis, and also evaluated by the stability of the suspension obtained by dissolving the blends in formic acid and by the morphologies of the blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two types of macromolecular free radicals -CH2CONHCHCH2- (a) and -CH2C=O (b) trapped in irradiated Polyamide-1010 (PA1010) and PA1010 filled with neodymium oxide (Nd2O3) were characterized by an ESR approach. It was found out that a was mainly trapped in the fold surface of the lamellae and b in the amorphous phase. This result suggested that trapped radicals mainly existed in the noncrystalline phases. The effect of the fold surface area of the lamellae on the behavior of the trapped radicals are discussed in this article. Whether for the specimens with similar crystallinities but different crystallite sizes or for those with the same concentration of neodymium oxide but different crystallinities, radical a exists dominantly in a specimen with a larger fold surface area of the lamellae. Under a certain circumstance, radical a can transform into radical b for a specimen with a larger fold surface area of the lamellae. It means that the fold surface area of the lamellae plays an important role in the transformation of radical a to b. (C) 1998 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology of blends of PA1010 and polypropylene (PP) compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA). It is found that the morphologies are dependent on the content of glycidyl methacrylate in PP-g-GMA and the mixing time. The size of the dispersed PP particles decreases as the content of GMA in the PP-g-GMA increases for binary blends of PA1010 and PP-g-GMA. Similar results are obtained for changing the mixing time. Ternary blends of PA1010, PP, and PP-g-GMA indicate that morphologies depend on the content of glycidyl metyacrylate in the PP-g-GMA and the miscibility of PP and PP-g-GMA. By changing the content of GMA in PP-g-GMA, it was possible to introduce significant changes of morphology. A matrix removal TEM method is used to investigate the interfacial structure of PA1010/PP blends containing PP-g-GMA as a compatibilizer. This technique shows the reaction product between PA1010 and PP-g-GMA to be located at interface as a surrounding layer around domain particles. SEM observation on the interface shows that the adhesion between PA1010 and pure PP is very weak and their interface boundary is sharp. For the samples of PA1010 and PP-g-GMA, it was found that the interface was not so obvious, and the reaction between PA1010 and PP-g-GMA strengthens the interface significantly. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper microcrystalline structures of polyamide-1010 (PA1010) mixed with neodymium oxide (Nd2O3) were studied by Wide Angle X-ray Diffraction (WAXD) and Small Angle X-ray Scattering (SAXS). Crystallization behavior was investigated by DSC. The transition and relaxation of macromolecules in the crystalline phase were explored by Differential Scanning Calorimetry (DSC). It was revealed that neodymium oxide plays an important role in PA1010 crystallization as a heterogeneous nucleating agent. It can improve the crystallization rate, reduce crystallite size and introduce crystal imperfections. The microcrystalline structure was imposed by the addition of Nd2O3 However, the heterogeneous nucleation effect obviously does not exert its influence on the transition and relaxation of macromolecules in the crystalline phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyamide 1010/poly(propylene) (PA1010/PP) blends were investigated with and without the addition of poly(propylene)-graft-glycidyl methacrylate (PP-g-GMA). The effect of the compatibilizer on the thermal properties and crystallization behavior was determined by differential scanning calorimetry and wide-angle X-ray diffraction. From the results it is found that the crystallization of PA 1010 is significantly affected by the presence of PP-g-GMA. PP/PA 1010 (75/25) blends containing higher amounts of PP-g-GMA show concurrent crystallization at the crystallization temperature of PP. Isothermal crystallization kinetics also were performed in order to investigate the influence of the compatibilized process on the nucleation and growth mechanism. In the PP/PA 1010 (25/75) blends, concurrent crystallization behavior was not observed, even though the amount of PPg-GMA was high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two types of macromolecular free radicals similar to CH2CONH(C) over dotHCH(2) similar to (a) and similar to CH2(C) over dot = O (b) trapped in irradiated polyamide-1010 (PA1010) and PA1010 filled with neodymium oxide (Nd2O3) were characterized by an ESR approach. It is found that (a) is prevailingly trapped in the fold surface of the lamellae and (b) in the amorphous phase. This result suggests that trapped radicals mainly exist in the non-crystalline phases. The effect of the fold surface area of the lamellae on the behavior of the trapped radicals is discussed in this paper. Whether for the specimens with similar crystallinities, but different crystallite sizes, or for those with the same concentration of neodymium oxide, but different crystallinities, radical (a) exists dominantly in the specimen with a larger fold surface area of the lamellae. Under certain circumstances, radical (a) can transform into radical (b), obviously for a specimen with a larger fold surface area of the lamellae. It means that the fold surface area of the lamellae plays an important role in the transformation of radical (a) to (b). (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decaying of free radicals in the course of heating, trapped in irradiated polyamide 1010 with different crystallinities, were investigated using an ESR technique. The decaying temperature, at which all radicals decay completely, depends on the aggregation of polyamide 1010 prior to radiation. The higher the crystallinity, the higher the temperature at which the radicals disappear. Dynamically speaking, radicals in specimens with higher crystallinity take longer to decay. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiation-induced crystallization of polyamide-1010 (PA1010) or nylon-1010 containing heterogeneous nuclei (neodymium oxide, Nd2O3) is discussed in this paper by Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC). The results show that at low dosage the crystallinities of the irradiated specimens increase, while crystallite size (L(hkl)) decreases, indicating that some new crystallites are produced in the course of irradiation. The new centers were brought about in the fold surface of the lamellae. Copyright (C) 1997 Elsevier Science Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irradiated polyamide-1010 (PA1010) with and without heat treatment after gamma-ray irradiation was compared by wide angle x-ray diffraction (WAXD), differential scanning calorimeter (DSC) and the determination of gel fractions. The results indicate that post radiation effects due to post radiation crosslinking and scissions affect physical properties. Post radiation effects restrain the formation and perfection of the planes (010), and make the crystals imperfect. Post radiation effects change the crystalline structures of polyamide-1010.