972 resultados para POLARIZED-LIGHT
Resumo:
Aim: The aim of this study was to evaluate with light microscopy the healing process of third-degree burns on diabetic rats treated with polarized light (lambda 400-2000 nm, 20 or 40 J/cm(2)/session, 40 mW/cm(2), 2.4 J/cm(2)/min, 5.5-cm beam diameter). Background: Uncontrolled diabetes mellitus causes severe disruption of the body's metabolism, including healing. Polarized light sources have been shown to be effective in improving healing in many situations. Animals and Methods: Diabetes mellitus was induced with streptozotocin (60 mg/kg) in 45 male Wistar albino rats, and a third-degree burn (1.5 by 1.5 cm) was created on the dorsum of each animal under general anesthesia. The animals were randomly distributed into three groups: control, 20 J/cm(2), and 40 J/cm(2). Each group was then divided into three subgroups based on time of death (7, 14, 21 d). Phototherapy (20 or 40 J/cm(2) per session) was carried out immediately after the burning and repeated daily until the day before death. Following animal death, specimens were removed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin (HE) or Sirius Red or immunomarked with CK AE1/AE3 antibody. Qualitative and semiquantitative analyses were performed under light microscopy. The results were statistically analyzed. Results: The animals treated with 20 J/cm(2) showed significant differences with regard to revascularization and re-epithelialization. Although the 40 J/cm(2) group showed stimulation of fibroblastic proliferation as an isolated feature, no other difference from the control was observed. Conclusion: Our results suggest that the use of polarized light at 20 J/cm(2) effectively improves the healing of third-degree burns on diabetic animals at both early and late stages of repair.
Resumo:
Background and Objectives: Er:YAG laser has been used for caries removal and cavity preparation, using ablative parameters. Its effect on the margins of restorations submitted to cariogenic challenge has not yet been sufficiently investigated. The aim of this study was to assess the enamel adjacent to restored Er:YAG laser-prepared cavities submitted to cariogenic challenge in situ, under polarized light microscopy. Study Design/Materials and Methods: Ninety-one enamel slabs were randomly assigned to seven groups (n = 13): I, II, III-Er:YAG laser with 250 mJ, 62.5 J/cm(2), combined with 2, 3, and 4 Hz, respectively; IV, V, VI-Er:YAG laser with 350 mJ, 87.5 J/cm(2), combined with 2, 3, and 4 Hz, respectively; VII-High-speed handpiece (control). Cavities were restored and the restorations were polished. The slabs were fixed to intra-oral appliances, worn by 13 volunteers for 14 days. Sucrose solution was applied to each slab six times per day. Samples were removed, cleaned, sectioned and ground to polarized light microscopic analysis. Demineralized area and inhibition zone width were quantitatively assessed. Presence or absence of cracks was also analyzed. Scores for demineralization and inhibition zone were determined. Results: No difference was found among the groups with regard to demineralized area, inhibition zone width, presence or absence of cracks, and demineralization score. Inhibition zone score showed difference among the groups. There was a correlation between the quantitative measures and the scores. Conclusion: Er:YAG laser was similar to high-speed handpiece, with regard to alterations in enamel adjacent to restorations submitted to cariogenic challenge in situ. The inhibition zone score might suggest less demineralization at the restoration margin of the irradiated substrates. Correlation between the quantitative measures and scores indicates that score was, in this case, a suitable complementary method for assessment of caries lesion around restorations, under polarized light microscopy. Lasers Surg. Med. 40:634-643, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.
Resumo:
Different secondary caries models may present different results. The purpose of this study was to compare different in vitro secondary caries models, evaluating the obtained results by polarized-light microscopy (PLM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Standardized human enamel specimens (n = 12) restored with different materials (Z250 conventional composite resin-CRZ, Freedom polyacid-modified composite resin-CRF, Vitremer resin-modified glass-ionomer-GIV, and Fuji IX conventional glass-ionomer cement-GIF) were submitted to microbiological (MM) or chemical caries models (CM). The control group was not submitted to any caries model. For MM, specimens were immersed firstly in sucrose broth inoculated with Streptococcus mutans ATCC 35688, incubated at 37 degrees C/5% CO(2) for 14 days and then in remineralizing solution for 14 days. For CM, specimens were submitted to chemical pH-cycling. Specimens were ground, submitted to PLM and then were dehydrated, gold-sputtered and submitted to SEM and EDS. Results were statistically analyzed by Kruskall-Wallis and Student-Newman-Keuls tests (alpha = 0.05). No differences between in vitro caries models were found. Morphological differences in enamel demineralization were found between composite resin and polyacid-modified composite resin (CRZ and CRF) and between the resin-modified glass-ionomer and the glass-ionomer cement (GIF and GIV). GIF showed higher calcium concentration and less demineralization, differing from the other materials. In conclusion, the glass-ionomer cement showed less caries formation under both in vitro caries models evaluated. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 90B: 635-640, 2009
Resumo:
Secondary caries is the main cause of direct restoration replacement. The purpose of this study was to analyze enamel adjacent to different restorative materials after in situ cariogenic challenge using polarized-light microscopy (PLM), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDS). Twelve volunteers, with a low level of dental plaque, a low level of mutans streptococci, and normal salivary flow, wore removable palatal acrylic appliances containing enamel specimens restored with Z250 composite, Freedom composite, Fuji IX glass-ionomer cement, or Vitremer resin-modified glass-ionomer for 14 days. Volunteers dripped one drop of 20% sucrose solution (n = 10) or distilled water (control group) onto each specimen 8 times per day. Specimens were removed from the appliances and submitted to PLM for examination of the lesion area (in mm(2)), followed by dehydration, gold-sputtering, and submission to SEM and EDS. The calcium (Ca) and phosphorus (P) contents were evaluated in weight per cent (%wt). Differences were found between Z250 and Vitremer, and between Z250 and FujiIX, when analyzed using PLM. Energy-dispersive X-ray analysis results showed differences between the studied materials regarding Ca %wt. In conclusion, enamel adjacent to glass-ionomer cement presented a higher Ca %wt, but this material did not completely prevent enamel secondary caries under in situ cariogenic challenge.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This bipartite comparative study aims at inspecting the similarities and differences between the Jones and Stokes–Mueller formalisms when modeling polarized light propagation with numerical simulations of the Monte Carlo type. In this first part, we review the theoretical concepts that concern light propagation and detection with both pure and partially/totally unpolarized states. The latter case involving fluctuations, or “depolarizing effects,” is of special interest here: Jones and Stokes–Mueller are equally apt to model such effects and are expected to yield identical results. In a second, ensuing paper, empirical evidence is provided by means of numerical experiments, using both formalisms.
Resumo:
In this second part of our comparative study inspecting the (dis)similarities between “Stokes” and “Jones,” we present simulation results yielded by two independent Monte Carlo programs: (i) one developed in Bern with the Jones formalism and (ii) the other implemented in Ulm with the Stokes notation. The simulated polarimetric experiments involve suspensions of polystyrene spheres with varying size. Reflection and refraction at the sample/air interfaces are also considered. Both programs yield identical results when propagating pure polarization states, yet, with unpolarized illumination, second order statistical differences appear, thereby highlighting the pre-averaged nature of the Stokes parameters. This study serves as a validation for both programs and clarifies the misleading belief according to which “Jones cannot treat depolarizing effects.”
Resumo:
The aim of this study was to compare different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions by microhardness and polarized light microscopy analyses. One hundred blocks of bovine enamel were randomly divided into four groups (n = 25) according to the bacterial model for caries induction: (A) Streptococcus mutans, (B) S. mutans and Lactobacillus acidophilus, (C) S. mutans and L. casei, and (D) S. mutans, L. acidophilus, and L. casei. Within each group, the blocks were randomly divided into five subgroups according to the duration of the period of caries induction (4-20 days). The enamel blocks were immersed in cariogenic solution containing the microorganisms, which was changed every 48 h. Groups C and D presented lower surface hardness values (SMH) and higher area of hardness loss (ΔS) after the cariogenic challenge than groups A and B (P < 0.05). As regards lesion depth, under polarized light microscopy, group A presented significantly lower values, and groups C and D the highest values. Group B showed a higher value than group A (P < 0.05). Groups A and B exhibited subsurface caries lesions after all treatment durations, while groups C and D presented erosion-type lesions with surface softening. The model using S. mutans, whether or not it was associated with L. acidophilus, was less aggressive and may be used for the induction of non-cavitated enamel caries-like lesions. The optimal period for inducing caries-like lesions was 8 days.
Resumo:
"May 16, 1952."
Resumo:
Publisher's catalog comprises last 32 pages.
Resumo:
Body parts that can reflect highly polarized light have been found in several species of stomatopod crustaceans (mantis shrimps). These polarized light reflectors can be grossly divided into two major types. The first type, usually red or pink in color to the human visual system, is located within an animal’s cuticle. Reflectors of the second type, showing iridescent blue, are located beneath the exoskeleton and thus are unaffected by the molt cycle. We used reflection spectropolarimetry and transmission electron microscopy (TEM) to study the reflective properties and the structures that reflect highly polarized light in stomatopods. For the first type of reflector, the degree of polarization usually changes dramatically, from less than 20% to over 70%, with a change in viewing angle. TEM examination indicates that the polarization reflection is generated by multilayer thin-film interference. The second type of reflector, the blue colored ones, reflects highly polarized light to all viewing angles. However, these reflectors show a slight chromatic change with different viewing angles. TEM sections have revealed that streams of oval-shaped vesicles might be responsible for the production of the polarized light reflection. In all the reflectors we have examined so far, the reflected light is always maximally polarized at around 500 nm, which is close to the wavelength best transmitted by sea water. This suggests that the polarized light reflectors found in stomatopods are well adapted to the underwater environment. We also found that most reflectors produce polarized light with a horizontal e-vector. How these polarized light reflectors are used in stomatopod signaling remains unknown.
Resumo:
We investigate the emission of multimodal polarized light from light emitting devices due to spin-aligned carrier injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as nonradiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g factor and magnetic field affect the degree of polarization of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring the degree of spin polarization of carrier injection into nonmagnetic semicondutors.