980 resultados para PMMA MATRICES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the current work, three studies about non-aqueous dispersions of particles were carried out by using an amphiphilic block copolymer poly(isoprene)-block-poly(methyl methacrylate) (PI-b-PMMA) as stabilizer:rn1. Dispersions of polyurethane and polyurea porous particles for polymer compositesrn2. Dispersions of PMMA and PU particles with PDI dye for study of Single Molecule Spectroscopy Detectionrn3. Dispersions of graphene nanosheets for polymer compositesrnrnIn the first study, highly porous polyurethane and polyurea particles were prepared in a non-aqueous emulsion. The preparation of porous particles consisted of two parts: At first, a system was developed where the emulsion had high stability for the polymerization among diisocyanate, diol and water. In the second part, porous particles were prepared by using two methods fission/fusion and combination by which highly porous particles were obtained. In this study, the applications of porous particles were also investigated where polyurethane particles were tested as filling material for polymer composites and as catalyst carrier for polyethylene polymerization. rnrnIn the second study, PMMA and PU particles from one non-aqueous emulsion were investigated via single molecule fluorescence detection. At first the particles were loaded with PDI dye, which were detected by fluorescence microscopy. The distribution and orientation of the PDI molecules in the particles were successfully observed by Single Molecule Fluorescence Detection. The molecules were homogenously distributed inside of the particles. In addition they had random orientation, meaning that no aggregations of dye molecules were formed. With the results, it could be supposed that the polymer chains were also homogenously distributed in the particles, and that the conformation was relatively flexible. rnrnIn the third part of the study, graphene nanosheets with high surface area were dispersed in an organic solvent with low boiling point and low toxicity, THF, stabilized with a block copolymer PI-b-PMMA. The dispersion was used to prepare polymer composites. It was shown that the modified graphene nanosheets had good compatibility with the PS and PMMA matrices. rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are interesting materials with extraordinary properties for various applications. Here, vertically-aligned multiwalled CNTs (VA-MWCNTs) are grown by our dual radio frequency plasma enhanced chemical vapor deposition (PECVD). After optimizing the synthesis processes, these VA-MWCNTs were fabricated in to a series of devices for applications in vacuum electronics, glucose biosensors, glucose biofuel cells, and supercapacitors In particular, we have created the so-called PMMA-CNT matrices (opened-tip CNTs embedded in poly-methyl methacrylate) that are promising components in a novel energy sensing, generation and storage (SGS) system that integrate glucose biosensors, biofuel cells, and supercapacitors. The content of this thesis work is described as follows: 1. We have first optimized the synthesis of VA-MWCNTs by our PECVD technique. The effects of CH4 flow rate and growth duration on the lengths of these CNTs were studied. 2. We have characterized these VA-MWCNTs for electron field emission. We noticed that as grown CNTs suffers from high emission threshold, poor emission density and poor long-term stability. We attempted a series of experiments to understand ways to overcome these problems. First, we decrease the screening effects on VA-MWCNTs by creating arrays of self-assembled CNT bundles that are catalyst-free and opened tips. These bundles are found to enhance the field emission stability and emission density. Subsequently, we have created PMMA-CNT matrices that are excellent electron field emitters with an emission threshold field of more than two-fold lower than that of the as-grown sample. Furthermore, no significant emission degradation was observed after a continuous emission test of 40 hours (versus much shorter tests in reported literatures). Based on the new understanding we learnt from the PMMA-CNT matrices, we further created PMMA-STO-CNT matrices by embedding opened-tip VA-MWCNTs that are coated with strontium titanate (SrTiO3) with PMMA. We found that the PMMA-STO-CNT matrices have all the desired properties of the PMMA-CNT matrices. Furthermore, PMMA-STO-CNT matrices offer much lower emission threshold field, about five-fold lower than that of as grown VA-MWCNTs. The new understandings we obtained are important for practical application of VA-MWCNTs in field emission devices. 3. Subsequently, we have functionalized PMMA-CNT matrices for glucose biosensing. Our biosensor was developed by immobilized glucose oxidase (GOχ) on the opened-tip CNTs exposed on the matrices. The durability, stability and sensitivity of the biosensor were studied. In order to understand the performance of miniaturized glucose biosensors, we have then investigated the effect of working electrode area on the sensitivity and current level of our biosensors. 4. Next, functionalized PMMA-CNT matrices were utilized for energy generation and storage. We found that PMMA-CNT matrices are promising component in glucose/O2 biofuel cells (BFCs) for energy generation. The construction of these BFCs and the effect of the electrode area on the power density of these BFCs were investigated. Then, we have attempted to use PMMA-CNT matrices as supercapacitors for energy storage devices. The performance of these supercapacitors and ways to enhance their performance are discussed. 5. Finally, we further evaluated the concept of energy SGS system that integrated glucose biosensors, biofuel cells, and supercapacitors. This SGS system may be implantable to monitor and control the blood glucose level in our body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ITO nanowires were synthesized by carbothermal reduction process, using a co-evaporation method, and have controlled size, shape, and chemical composition. The electrical measurements of nanowires showed they have a resistance of about 102 Ω. In order to produce nanocomposites films, nanowires were dispersed in toluene using an ultrasonic cleaner, so the PMMA polymer was added, and the system was kept under agitation up to obtain a clear suspension. The PMMA polymer was filled with 1, 2, 5 and 10% in weight of nanowires, and the films were done by tape casting. The results showed that the electrical resistance of nanocomposites changed by over 7 orders of magnitude by increasing the amount of filler, and using 5 wt% of filler the composite resistance decreased from 1010 Ω to about 104 Ω, which means that percolation threshold of wires occurred at this concentration. This is an interesting result once for nanocomposites filled with ITO nanoparticles is necessary about 18% in weight to obtain percolation. The addition of filler up to 10 wt% decreased the resistance of the composite to 103 Ω, which is a value close to the resistance of wires. The composites were also analyzed by transmission electron microscopy (TEM), and the TEM results are in agreement with the electrical ones about percolation of nanowires. These results are promising once indicates that is possible to produce conductive and transparent in the visible range films by the addition of ITO nanowires in a polymeric matrix using a simple route. © 2011 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic reproduction number is a key parameter in mathematical modelling of transmissible diseases. From the stability analysis of the disease free equilibrium, by applying Routh-Hurwitz criteria, a threshold is obtained, which is called the basic reproduction number. However, the application of spectral radius theory on the next generation matrix provides a different expression for the basic reproduction number, that is, the square root of the previously found formula. If the spectral radius of the next generation matrix is defined as the geometric mean of partial reproduction numbers, however the product of these partial numbers is the basic reproduction number, then both methods provide the same expression. In order to show this statement, dengue transmission modelling incorporating or not the transovarian transmission is considered as a case study. Also tuberculosis transmission and sexually transmitted infection modellings are taken as further examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the modifications promoted by alkaline hydrolysis and glutaraldehyde (GA) crosslinking on type I collagen found in porcine skin have been studied. Collagen matrices were obtained from the alkaline hydrolysis of porcine skin, with subsequent GA crosslinking in different concentrations and reaction times. The elastin content determination showed that independent of the treatment, elastin was present in the matrices. Results obtained from in vitro trypsin degradation indicated that with the increase of GA concentration and reaction time, the degradation rate decreased. From thermogravimetry and differential scanning calorimetry analysis it can be observed that the collagen in the matrices becomes more resistant to thermal degradation as a consequence of the increasing crosslink degree. Scanning electron microscopy analysis indicated that after the GA crosslinking, collagen fibers become more organized and well-defined. Therefore, the preparations of porcine skin matrices with different degradation rates, which can be used in soft tissue reconstruction, are viable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several numerical methods for boundary value problems use integral and differential operational matrices, expressed in polynomial bases in a Hilbert space of functions. This work presents a sequence of matrix operations allowing a direct computation of operational matrices for polynomial bases, orthogonal or not, starting with any previously known reference matrix. Furthermore, it shows how to obtain the reference matrix for a chosen polynomial base. The results presented here can be applied not only for integration and differentiation, but also for any linear operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the families of generalized matrix ensembles recently considered which give rise to an orthogonal invariant stable Levy ensemble can be generated by the simple procedure of dividing Gaussian matrices by a random variable. The nonergodicity of this kind of disordered ensembles is investigated. It is shown that the same procedure applied to random graphs gives rise to a family that interpolates between the Erdos-Renyi and the scale free models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the femtosecond-laser micromachining of poly(methyl methacrylate) (PMMA) films doped with nonlinear azoaromatic chromophores: Disperse Red 1, Disperse Red 13 and Disperse Orange 3. We study the conditions for controlling chromophore degradation during the micromachining of PMMA doped with each chromophore. Furthermore, we successfully used fs-micromachining to fabricate optical waveguides within a bulk sample of PMMA doped with these azochromophores. (c) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is reported in this work the preparation, characterisation and photoluminescence study of poly(methylmethacrylate) (PMMA) thin films co-doped with [Eu(tta)(3)(H(2)O)(2)] and [Tb(acac)(3)(H(2)O)(3)] complexes. Both the composition and excitation wavelength may be tailored to fine-tune the emission properties of these Ln(3+)-beta-diketonate doped polymer films, exhibiting green and red primary colours, as well as intermediate colours. In addition to the ligand-Ln(3+) intramolecular energy transfer, it is observed an unprecedented intermolecular energy transfer process from the (5)D(4) emitting level of the Tb(3+) ion to the excited triplet state T(1) of the tta ligand coordinated to the Eu(3+) ion. The PMMA polymer matrix acts as a co-sensitizer and enhances the overall luminescence intensity of the polymer films. Furthermore, it provides considerable UV protection for the luminescent species and improves the photostability of the doped system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synergic effect of amylose on rheological characteristics of lysozyme physical gels evolved out of dimethylsulfoxide-water was verified and analyzed. The dynamics of the gels were experimentally approached by oscillatory rheology. The synergic effect was characterized by a decrease in the threshold DMSO volume fraction required for lysozyme gelation, and by a significant strengthening of the gel structure at over-critical solvent and protein concentrations. Drastic changes in the relaxation and creep curve patterns for systems in the presence of amylose were verified. Complex viscosity dependence on temperature was found to conform to an Arrhenius-like equation, allowing the determination of an activation energy term (Ea, apparent) for discrimination of gel rigidity. A dilatant effect was found to be induced by temperature on the flow behavior of lysozyme dispersions in DMSO-H(2)O in sub-critical conditions for gelation, which was greatly intensified by the presence of amylose in the samples. That transition was interpreted as reflecting a change from a predominant colloidal flow regime, where globular components are the prevailing structural elements, to a mainly fibrillar, polymeric flow behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid matrices of polysiloxane-polyvinyl alcohol (POS-PVA) were prepared by sol-gel technique using different concentrations of the organic component (polyvinyl alcohol, PVA) in the synthesis medium. The goal was to prepare carriers for immobilizing enzyme by taking into consideration properties as hardness, mean pore diameter, specific surface area and pore size distribution. The matrices were activated with sodium metaperiodate to render functional groups for binding the lipase from Candida rugosa, used here as a study model. Results showed that low proportion of PVA gave POS-PVA with low surface area and pore volume, although with higher hardness. The chemical activation decreased the pore volume and increased the pore size with a decrease on the surface area of about 60-75%. The matrices for enzyme immobilization were chosen considering the best combination of high surface area and hardness. Thus, the POS-PVA prepared with 5.56 x 10(-5) M of PVA with a surface area of 123 m(2)/g and hardness of 71 HV (50 gf 30 s) was shown to be suitable to immobilize the lipase, with an immobilization yield of about 40%. (c) 2008 Elsevier B.V. All rights reserved.