30 resultados para PLZT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the sintering method on the microstructural and electrical properties of (Pb(0.89)Nd(0.02)La(0.09))(Zr(0.65)Ti(0.35))O(3) (PNLZT) ceramics was studied by impedance spectroscopy. Structural and microstructural analyses were performed using x-ray and scanning electron microscopy techniques. Two different sintering routes were employed: the conventional and the hot-pressing sintering methods. The impedance analysis provided a convincing evidence for the existence of both grain (g) and grain boundary (gb) contributions to the conduction process. An equivalent circuit for the impedance behaviour has been proposed and discussed. The variation in the sintering method produces significant changes in the grain and grain boundary conductivities. For the grain effect, the main conduction mechanism has been associated with oxygen vacancy migration. Otherwise, for grain boundary conductivity the impedance behaviour has been discussed in terms of the brick-layer and the constriction resistance models (BLM and CRM, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead lanthanum zirconate titanate (PLZT) thin films with stoichiometry (9/65/35) were prepared by a dip-coating process using a polymeric organic solution. The solution viscosity was adjusted in the range of 15-56 cP. Silicon (100) substrates were previously cleaned and then immersed in the solution. The withdrawal speed of substrate from the solution was adjusted within a range of 5 to 20 mm/min. The coated substrates were thermally treated in the 450-700 degreesC temperature range. Surface roughness and crystallization of these films are strongly dependent on the annealing conditions. Infrared and X-ray diffraction data for PLZT powders heat-treated at 650 degreesC for 3 h show that the material is free of carbonate phases and crystalline. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PLZT thin films were prepared by a dip coating process using Pechini's method, also known as polymeric precursor method. The PLZT solution was obtained from a mixture of the individual cation solutions and the process to prepare each solution is based on metallic citrate polymerization. The viscosity of the PLZT solution was adjusted at 40 cP while the ionic concentration was adjusted at 0.1 M. PLZT solutions were deposited on silicon (100) and platinum coated silicon (100) substrates with withdrawal speed at 5 mm/min. The coated substrates were thermally treated with a heating rate of 1 degreesC/min up to 300 degreesC and 5 degreesC/min up to 650 degreesC in order to obtain homogeneous and cracks free films. The influence of oxygen flow on crystallization and morphology of PLZT (9/65/35) thin film is discussed. (C) 2002 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PLZT thin films were prepared by a dip-coating process using Pechini's method. The PLZT solution was obtained from the mixture of the cation solutions. The viscosity of the solution was adjusted in the range of 20-40 cP, while the ionic concentration was adjusted in the range of 0.1 and 0.2 M. PLZT solutions were deposited on Si (1 0 0) substrate with withdrawal speed at 5 mm/min. The coated substrates were thermally treated with heating rate of 1 degreesC/min up to 300 and 5 degreesC/ min up to 650 degreesC in order to obtain homogeneous and crack free films. The influence of viscosity and ionic concentration on crystallization and morphology of PLZT (9/65/35) thin film will be discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PLZT powders with the formula Pb0.905La0.095(Zr0.65Ti0.35)(0.976)O-3+3.5 wt.% PbO were prepared by the organometallic precursor method (Pechini and partial oxalate processes). The microstructure of sintered 9.5/65/35 PLZT ceramics obtained from a partial oxalate procedure shows that the outstanding feature of this microstructure is its fairly uniform grains of about 1.8 mum. The microstructure of sintered PLZT ceramics obtained by the Pechini process consists of uniform small randomly- oriented grains tightly bonded together in the central part of the sample with,a grain size of about 1.2 mum. Cubic and elongated grains are formed at the sample's border. The microstructures of hot pressed PLZT ceramics obtained from both processes are dense and rather uniform. After a double stage of hot pressing (2 plus 20 h) the microstructure of PLZT is fully dense, uniform and homogeneous with a grain size of approximately 2.5 mum. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZrTiO4 (ZT), obtained by the Pechini method, was used as precursor for obtaining PLZT (lead lanthanum zirconium titanate). An aqueous solution of oxalic acid was prepared with particles of ZT, Pb(NO3)(2) and La2O3. After the PbC2O4 and La2O3 precipitate on ZT particles, the materials were calcined and X-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered, in two steps, and a density of about 8.0 g/cm(3) was obtained. After the second sintering the XRD pattern showed the occurrence of tetragonal and rhombohedral phases. This was caused by a stoichiometric deviation and the material showed a high optical transparency. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PLZT ceramics belong to one of the very important groups of functional materials that make a basis for the production of a large range of electronic devices. The microstructure and properties of ceramics depend on the powder preparation and thermal processing conditions. Various techniques have been used to obtain chemically homogeneous and fine starting powders. PLZT powders have been prepared by two different production routes: by a modified Pechini method, using a polymeric precursor method (PMM) and by a partial oxalate method. A two-step sintering process, including a hot pressing, was carried out at 1100 and 1200degreesC Distinct phases obtained during the sintering process have been investigated by SEM and EDS techniques and dielectric properties such as permittivity and dielectric loss were measured in a frequency range from 1 to 20 kHz.. A significant difference in microstructure and dielectric properties, depending on powder origin and sintering procedure, has been noticed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study consisted of an investigation of the influence of powder preparation on the phase and chemical compositions and microstructure of 9.5/65/35 PLZT materials sintered in an oxygen atmosphere. The powders with the formula Pb0.905La0.095(Zr0.65Ti0.35)(0.976)O-3+3.5 wt.% PbO were prepared by the polymeric organometallic precursor method (the Pechini method and the partial oxalate procedure). Phase composition was determined by X-ray diffraction of powder and EDS analysis, while grain size was determined based on the micrograph obtained from SEM. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PLZT(9/65/35) obtained by association between the Pechini method (ZT) and partial oxalate (PLZT) was prepared. The stoichiometric phase and monophasic (cubic) PLZT obtained by calcination did not occur after sintering. The sintering process, by using two stages, caused a liquid phase formation due to a PbO excess (5 and 10 wt%). Samples with high density (similar to 8 g/cm(3)) and optical transparency(similar to 12%) were obtained. However, an equilibrium between the excess of PbO of sample/atmosphere PbO leads to a segregated PbO phase on the boundaries of the microstructure. A diffusion of Zr, Ti and La ions from PLZT to PbO phase promoted a stoichiometric deviation of the matrix and modified the optical and dielectric characteristics. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gap between the bulk materials and thin films can be filled with thick films suitably designed and appropriate processed. Thick films of complex system like lead-lanthanum-zirconium titanate (PLZT) is difficult to produce by simple solid-state reaction keeping compositional homogeneity and optimal grain size distribution. In the present work, PLZT thick films were fabricated by screen-printing technique from nanosized powders obtained through soft chemistry by polymeric precursor method. Thick film paste was obtained by mixing PLZT fine powders and organic vehicle. The upper and bottom electrodes based on Ag-Pd and functional component based on PLZT were screen-printed on alumina substrate and after that annealed in air atmosphere. The powder morphology, microstructure, dielectric and ferroelectric properties of 9.5/65/35 PLZT thick films were analysed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 9.5/65/35 PLZT was prepared from the polymeric precursors (the Pechini and partial oxalate process) and by sintering in two stages in an oxygen atmosphere. After thermal treatment at 400 degreesC, the powders were calcinated and sintered at 1200 degreesC with slow heating and cooling rates. The second stage of sintering consisted of hot pressing at the same temperature in oxygen atmosphere. After calcination of PLZT powders obtained by both methods, as well as after sintering of PLZT obtained by Pechini process, the paraelectric cubic phase was formed. After sintering of PLZT obtained by partial oxalate procedure, small tetragonality of crystal structure was observed. After hot pressing PLZT was pseudocubic. SEM microstructural analyses were carried out of the sintering and hot pressed samples and indicated the small grain size less than 2 mum. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 9.5/65/35 PLZT ceramic with a Pb-0.905 La-0.095 (Zr-0.65 Ti-0.35)(0.976) O-3 + 35 w% PbO formula was prepared using the Pechini method for powder preparation and two-step sintering in an oxygen atmosphere. Thr first step consisted of sintering at 1200 degrees C for 4 h with slow heating and cooling rates. The second step consisted of hot pressing at 1200 degrees C for 3 h, with slow heating and cooling rates and pressing pressures of 20 MPa (initial pressure) and 40 MPa (at sintering temperature). Investigations were made of the powder phase formation and powder morphology, i.e. The structure of sintered and hot-pressed PLZT ceramics. SEM microstructural analyses were carried out on the sintering and hot-pressing processes. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.