881 resultados para PLANTLET REGENERATION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interactive effects of genotypes with callus induction and regeneration media combinations on green plantlet regeneration response were studied for three indica rice (Oryza sativa L.) cultivars, IR-72, IR-54 and Karnal Local. Isolated mature-embryoswere used to derive scutellar callus and fifteen media combinations involvingMS, N6, R2, SK1 and some modifications were tested. Regeneration percentage as well as the shoot-bud induction frequency were influenced by genotype, callus induction medium, regeneration medium, interaction between genotype and the two media (callus induction and regeneration) as well the interaction between the callus induction medium and regeneration medium. Basal media combination of SK1m (callusing) and MS (regeneration) was found to be the best for cv. Karnal Local in which regeneration frequency of 88% and shoot-bud induction of 233% was observed. In IR-72, the highest regeneration frequency of 47.5% and shoot-bud induction frequency of 77% was obtained on MS-MS combination. In IR-54, highest regeneration frequency (25%) was recorded on MMS(N)-MMS(N) combination, whereas, highest frequency of shoot-bud induction (50%) was observed on MMS(S)-MS combination. Although genotype and the composition of the callus induction basal medium were the major determinants of regeneration response, an overall analysis of variation also revealed a significant interaction between the media used for de-differentiation (callusing) and re-differentiation (plantlet regeneration)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文报道农杆菌转化毛白杨的高效遗传转化系统的建立。所用农杆菌菌株为:1.发根农杆菌R1000,含有Ri质粒pRiA4b。2.发根农杆菌R1000(pTVK85),是菌株R1000中除含有pRiA4b外,并兼容一个带有超致病区(Supervirulent region)的质粒pTVK85。3.根癌农杆菌C58C1(pBZ693),其质粒pBZ693是改建过的Ti质粒,载有T-DNA的基因1和基因2。将毛白杨外植体分别与上述菌株在MS+0.5ppm激动素培养基上先培养2天后,转移至MS+500ppm氨噻肟头胞霉素的培养基上。一个星期后即有根从外植体上产生。根癌农杆菌诱导的根形态明显与发根农杆菌诱导的根不同。R1000(pTVK85)诱导生根的外植体可占供试外植体总数的59%。转化的根有的可自发地形成不定芽或愈伤组织。通过培养基中激素的调整,可使转化的根系统100%再生出不定芽,并可由这些不定芽得到完整植株。转化植株的各克隆之间表型差异很大。有的地上部形态正常,仅根系与未转化植株有所不同。有的节间短、叶片多、顶端优势弱、根系发达而多发枝、多根毛。但所有转化植株皆无皱叶现象,其叶片形态与正常植株无异。普遍地有根生于植株的培养基平面以上部分的现象。取三个克隆的植株进行Southern杂交,其中两个为杂交阳性,表明确已被转化;另一个克隆为杂交阴性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文以白杄的合子胚为材料,建立了体细胞胚胎发生及其植株再生系统.通过对影响体细胞胚胎发生的主要因素的系统研究,实现了体细胞胚的高频率发生。运用扫描电镜、整体染色封片及石蜡切片等方法全面观察了体细胞胚胎发生过程中的形态学、细胞学及组织化学变化。建立了胚性细胞悬浮系,测定了几个重要生长参数的变化动态,优化了体细胞胚的液体培养条件。采用垂直平板聚丙烯酰胺电泳方法分析了体细胞胚胎发生过程中三种同工酶的变化。通过压片法观察了长期继代过程中胚性愈伤组织细胞及其再生植株根尖细胞染色体数目的变化。具体结果如下: 合子胚在4-6 ℃低温条件下保存1~3个月后,接种于LP+2mg/L2.4-D+lmg/L 6-BA的培养基上,黑暗条件下培养1个月后,产生浅黄色、褐色和白色半透明三种愈伤组织,其中白色半透明愈伤组织是胚性愈伤组织。黑暗中胚性愈伤组织在MS+lmg/L 2,4-D+lmg/L KT的继代培养基上可保持旺盛的增殖能力和分化潜力。当胚性愈伤组织转到MS+5mg/L ABA+50g/L PEG+5mg/L AgN03的分化培养基上,1个月后可产生大量正常的子叶期成熟体细胞胚。成熟体细胞胚在相对湿度为75%的条件下干化20天后,转到含0.5%活性炭的无激素1/2MS基本培养基上,约40天后长出1.5—2.5cm的根,约60天后长出真叶。光,ABA、蔗糖、AgN03 PEG浓度是影响体细胞胚胎发生的主要因素。 在相同的培养条件下,以新产生的子叶期体细胞胚为外植体,也可诱导体细胞胚胎发生。 胚性愈伤组织起源于合子胚子叶和下胚轴的表皮及表皮下的一些细胞。胚性愈伤组织中的一些单个胚性细胞经过第一次分裂产生两个细胞,即胚细胞和胚柄细胞,它们继续进行分裂几次以后形成胚性胚柄团结构。胚性胚柄团在分化培养基上可发育为成熟的子叶期胚。体细胞胚的成熟过程大致可分四个时期:胚性胚柄团、球形胚至鱼雷形胚、子叶前期胚和子叶期成熟胚。通过PAS反应研究后发现,在体细胞胚发育过程中,淀粉粒在胚性胚柄团时期开始积累,至心形胚时期达到积累高峰,子叶胚时期仅在器官原基及其附近细胞肉有淀粉粒分布。结果表明,淀粉是体细胞胚胎发生的一种重要能量来源。 在初始细胞密度为3.O%(鲜重)、摇床转速为150r/min的条件下,用与固体培养基成分相似的液体培养基对胚性愈伤组织进行悬浮培养,胚性愈伤组织的生长率大大提高。在悬浮培养过程中,培养物的鲜重、干重、紧实细胞体积及胚性胚柄团数目依次在6~10天内达到高峰。培养液的pH值和电导率分别在6—8天达到最低点。 胚性和非胚性愈伤组织的三种同工酶酶谱都明显不同;胚性愈伤组织的过氧化物酶和酸性磷酸酯酶活性较高,而非胚性愈伤组织的酯酶活性较高。体细胞胚发育过程中,三种同工酶酶谱都呈规律性变化;j活性都有逐渐增强的趋势,但酸性磷酸酯酶活性到了最后时期又突然下降。 胚性愈伤组织经过长期继代后,生长率和分化能力没有明显变化,但有些细胞内染色体数目发生了无规律的变化( 2n=7—24,2n>28),而再生植株根尖细胞染色体数目比较稳定( 2n=28).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

胡杨(Populus euphratica Oliv.)是干旱荒漠风沙前治地区唯一分布的乔木树种,具有极强的抗逆性,突出地表现出较强的耐盐碱能力。由于胡杨在繁殖上存在问题,种子采后极易丧失生活力和无性扦插繁殖难以生根,加之人们对胡杨耐盐抗逆机制缺乏了解,应而极大地制约了这一珍贵抗逆种质资源的开发和利用,现有资源的保存也受到严重危胁。试验首先利用植物细胞工程技术开展了胡杨体细胞再生植株的系统研究,并在分子水平上就愈伤组织的培养和器官发生过程中表达的特异蛋白开展了深入工作。其次,对胡杨耐盐机制进行了研究,分析了胡杨细胞盐胁迫响应蛋白,开展了盐胁迫条件下细胞对离子吸收和分配特性以及与耐盐有关的形态结构的研究。这一工作的开展对于有效地保存、开发和利用胡杨种质资源,对于荒漠化治理,以及深入认识胡杨耐盐性、丰富和发展木本植物耐盐理论,具有十分重要的意义。 研究取得的主要结果如下: 1.较好地解决了胡杨试管培养中黄萎和退化等难以克服的问题,通过全面和系统的比较研究和对培养条件的优化,首次获得了高频率的和成熟的胡杨体细胞再生植株体系。胡杨愈伤组织、离体叶片和离体茎段不定芽再生频率分别可达82.9%、100%和83%,试管苗生根为86.2%。 2.提出了以愈伤组织表达蛋白状况作为判定其器官发生能力的观点,确定了三类愈伤组织和器官发生中三个不同分化阶段的蛋白分子标记。利用SDS-PAGE和IEF-SDS-PAGE对胡杨不同类型愈伤组织和愈伤组织分化不定芽过程的蛋白进行了研究。结果表明:不同类型愈伤组织中表达的蛋白存在着一定差异。在光下和BA/NAA为1诱导产生的具有较强器官发生能力的茎基愈伤组织,其蛋白组分明显地少于其它类型的愈伤组织,表明其分化程度较低。经过黑暗和BA/NAA为0.5的继代培养,愈伤组织产生了特异的24。5KD和58.6KD的标记蛋白,并且也表达了其器官发生时表达的19KD和31KD蛋白。说明愈伤组织经过继代培养其器官发生能力下降是与细胞分化程度增加相关的。茎基愈伤组织在光下和BA/NAA为5的条件下进行器官发生诱导,随着愈伤组织形成分生细胞团块和不定芽原基明显地表达了20KD和55KD蛋白带,并且20KD蛋白中包含有特异的pI为5。5-6.5的蛋白。43KD和pI为6.5-7.5的蛋白为器官发生前期蛋白。本文不愈伤组织表达蛋白状况与器官发生能力间关系进行了讨论。 3.分离和鉴定了胡杨细胞盐胁迫响应蛋白,从蛋白表达上证实盐胁迫对胡杨细胞产生的影响明显地分为渗透胁迫和离子伤害胁迫两种效应。对悬浮培养的胡杨细胞进行NaCL和PEG(6000)胁迫处理,SDS-PAGE分析表明:NaCL和PEG胁迫处理的细胞均明显地表达了28KD和59KD蛋白带,表明28KD和59DK蛋白是与渗透胁迫有关的。66KD和60KD蛋白带仅在高水平盐胁迫细胞中显著表达,应而是与盐胁迫中离子伤害有关的蛋白。进一步证实胡杨细胞中28KD和66KD蛋白带表达受ABA诱导。通过IEF-SDS-PAGE证实,28KD蛋白包含有pI为8.0-9.0的蛋白,渗透胁迫和离子胁迫相关的分离和鉴定为通过蛋白途径克隆与渗透胁迫和离子胁迫相关基因,为深入认识胡杨耐盐机制奠定了基础。 4.通过X-射线细胞微区分析以及与毛白杨细胞比较发现,胡杨细胞对培养介质中高浓度的盐离子具有较强的拒吸作用和一定的忍耐性。胡杨细胞中液泡不具有积聚离子的功能,细胞分室性渗调节作用不明显。胡杨细胞膜对离子进入具有选择功能,表现在培养介质中Na和CL离子进入细胞和由细胞质进入液泡不以等摩尔数形式进行,进入的CL离子比Na离子约高50%,说明了二者通过质膜是由不同机制控制的,是分开进行的,也说明胡杨细胞拒Na离子强于拒CL离子。另外胡杨细胞受到盐胁迫时还表现出比较强的维持细胞内离子平衡的功能。正是由于上述特性,才赋予了胡杨细胞具有较强的耐盐性。 5.利用电子显微镜和光学显微镜中相差和微分干涉等技术,对胡杨细胞和组织结构进行了观察。与毛白杨细胞相比,胡杨细胞中具有较丰富的线粒体和质体,盐胁迫和渗透胁迫均明显地提高了细胞质中线粒体数和质体数,并使质体中内含体增多,细胞质中和液泡内缘出现明显的嗜饿物质。研究还发现,胡杨细胞膜与细胞壁之间呈齿状结合,说明了膜与壁之间结合的牢固性和稳定性,解释了胡杨细胞在胁迫中不易发生质壁分离的原因。胡杨细胞在受到盐或渗透胁迫时,细胞内出现明显的丝状结晚,细胞核变大,核仁明显。在器官和组织结构方面,胡杨根系具有发达的根冠和根内皮层,根毛较多,叶片输导组织不发达等。这些结构的存在与胡杨的抗逆性是密切相关的。文中从形态结构上阐述了胡杨的耐盐碱特性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Callogenesis, somatic embryogenesis, and regeneration were obtained from tissues of unfertilized ovaries of sweet orange (Citrus sinensis Osbeck.) cv. Tobias. The influence of two modified basal media, woody plant medium (WPM) and N6 medium, to induce callus formation from pistils was determined. Overall, high frequencies of callogenesis were observed when either medium was used. However, initial culture of explants in WPM medium followed by transfer of callus to N6 medium resulted in higher frequency of callus induction (of 2.30 callus per explant that were larger than 0.5 cm in size), and of subsequent development of embryogenic callus (10%). A total of 125 somatic embryos were obtained. After 6 months of culture, 72% of somatic embryos germinated into plantlets. These plantlets were subsequently micrografted in vitro, and then acclimatized. Ploidy of these plants were determined using flow cytometry and TRAPS molecular markers were used to confirm their maternal origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Callus cultures were established from hypocotyls and cotyledons derived from young seedlings of Eucalyptus citriodora. Successful plantlet production from cotyledonary callus was achieved within 6 weeks on Murashige and Skoog's basal medium supplemented with zeatin (1 mg/l) and indoleacetic acid (0.2 mg/l). Leaf and shoot callus obtained from one-year-old plants did not differentiate. Results reported contribute to defining optimal conditions for callus growth and plantlet formation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Zimbabwe, the average sweet potato yield (6 t/ha) is relatively low when compared to Asian counterparts (17 t/ha). These low crop yields have been blamed on weevil infestations and viral infections which account for 60-90% of sweet potato yield losses in Africa. Meristem tip culture, a Centre for Potato Improvement (CIP) initiated tissue culture technique, has been widely used to eradicate viruses from clonally propagated crops and has been noted to be one of the instrumental techniques that helped China to increase sweet potato yields. In an effort to adopt the meristem tip culture technique for the production of virus-free planting material of a local sweet potato (cv Brondal), a study was conducted to evaluate the effect of Benzylamino purine (BAP), 1-Naphthaleneacetic acid (NAA) and Gibberellic acid (GA3) (either alone or in combination) on cultured Brondal meristems. The different hormonal treatments were assessed on the following parameters: plantlet regenerative capacity, multiple plantlet production, shoot height, average leaf number per shoot and average node number per shoot, ten weeks after meristem culture. All treatments containing a combination of BAP (1 mg-L) and GA3 (at either 5 mg-L, 10 mg-L, or 20 mg-L) had a significantly (p<0.01) higher plantlet regenerative capacity of 33-66% when compared to other treatment combinations. Only treatments, 10 mg-L GA3 + 1 mg-L BAP and 20 mg-L GA3 + 1 mg-L BAP were capable of inducing multiple plantlet formation, producing an average of three plantlets/meristem and two plantlets/meristem respectively. Overall, treatment 10 mg-L GA3 + 1 mg-L BAP gave rise to significantly (p<0.01) taller shoots (20 mm) compared to the rest of the treatments used. For average leaf number per shoot, all GA3 treatments (5 mg-L, 10 mg-L, or 20 mg-L) supplemented with 1 mg-L BAP gave significantly (p<0.01) higher numbers of leaves (six leaves/shoot) than the rest of the treatments. Treatments 10 mg-L GA3 + 1 mg-L BAP and 20 mg-L GA3 + 1 mg-L BAP gave rise to the highest number of nodes per shoot, producing an average of three nodes per shoot. In sharp contrast to treatments containing a combination of BAP and GA3, all treatments containing a combination of BAP and NAA performed poorly in all parameters tested for plant regeneration of Brondal sweet potato variety. In conclusion, the best hormonal treatment for culturing Brondal meristems proved to be 10 mg-L GA3 + 1 mg-L BAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Callus was initiated in three different ‘‘esculenta’’ taro cultivars by culturing corm slices in the dark on half-strength MS medium supplemented with 2.0 mg/l 2,4- dichlorophenoxyacetic acid (2,4-D) for 20 days followed by subculture of all corm slices to half-strength MS medium containing 1.0 mg/l thidiazuron (TDZ). Depending on the cultivar, 20–30% of corm slices produced compact, yellow, nodular callus on media containing TDZ. Histological studies revealed the presence of typical embryogenic cells which were small, isodiametric with dense cytoplasms. Somatic embryos formed when callus was transferred to hormone-free medium and *72% of the embryos germinated into plantlets on this medium. Simultaneous formation of roots and shoots during germination, and the presence of shoot and root poles revealed by histology, confirmed that these structures were true somatic embryos. Plants derived from somatic embryos appeared phenotypically normal following 2 months growth in a glasshouse. This method is a significant advance on those previously reported for the esculenta cultivars of taro due to its efficiency and reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4- D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settledcell volume while approximately 60% of the embryos regenerated into plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the healing of class III furcation defects following transplantation of autogenous periosteal cells combined with b-tricalcium phosphate (b-TCP). Periosteal cells obtained from Beagle dogs’ periosteum explant cultures, were inoculated onto the surface of b-TCP. Class III furcation defects were created in the mandibular premolars. Three experimental groups were used to test the defects’ healing: group A, b-TCP seeded with periosteal cells were transplanted into the defects; group B, b-TCP alone was used for defect filling; and group C, the defect was without filling materials. Twelve weeks post surgery, the tissue samples were collected for histology, immunohistology and X-ray examination. It was found that both the length of newly formed periodontal ligament and the area of newly formed alveolar bone in group A, were significantly increased compared with both group B and C. Furthermore, both the proportion of newly formed periodontal ligament and newly formed alveolar bone in group A were much higher than those of group B and C. The quantity of cementum and its percentage in the defects (group A) were also significantly higher than those of group C. These results indicate that autogenous periosteal cells combined with b-TCP application can improve periodontal tissue regeneration in class III furcation defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Personal reflections on the We Al-Li Program