925 resultados para PHOTOOXIDATIVE DEGRADATION
Resumo:
The general mechanism for the photodegradation of polyethyleneglycol (PEG) by H2O2/UV was determined studying the photooxidation of small model molecules, like low molecular weight ethyleneglycols (tetra-, tri-, di-, and ethyleneglycol). After 30 min of irradiation the average molar mass (Mw) of the degradated PEG, analysed by GPC, fall to half of its initial value, with a concomitant increase in polydispersitivity and number of average chain scission (S), characterizing a random chain scission process yielding oligomers and smaller size ethyleneglycols. HPLC analysis of the photodegradation of the model ethyleneglycols proved that the oxidation mechanism involved consecutive reactions, where the larger ethyleneglycols gave rise, successively, to smaller ones. The photodegradation of ethyleneglycol lead to the formation of low molecular weight carboxylic acids, like glycolic, oxalic and formic acids.
Resumo:
Wastewater containing several dyes, including sulfur black from the dyeing process in a textile mill, was treated using a UV/H(2)O(2) process. The wastewater was characterized by a low BOD/ COD ratio, intense color and high acute toxicity to the algae species Pseudokirchneriella subcaptata. The influence of the pH and H(2)O(2) concentration on the treatment process was evaluated by a full factorial design 2(2) with three replicates of the central experiment. The removal of aromatic compounds and color was improved by an increase in the H(2)O(2) concentration and a decrease in pH. The best results were obtained at pH 5.0 and 6 g L(-1). With these conditions and 120 min of UV irradiation, the removal of the color, aromatic compounds and COD were 74.1, 55.1 and 44.8%, respectively. Under the same conditions, but using a photoreactor covered with aluminum foil, the removal of the color, aromatic compounds and COD were 92.0, 77.6 and 59.4%, respectively. Moreover, the use of aluminum foil reduced the cost of the treatment by 40.8%. These results suggest the potential application of reflective materials as a photoreactor accessory to reduce electric energy consumption during the UV/H(2)O(2) process.
Resumo:
The influence of the addition of high-impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene-butadiene-styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 770-779, 2011
Resumo:
The thioxanthone-sensitized photodegradation of poly(alkyl methacrylate) films [alkyl = methyl, ethyl, butyl, and hexyl] was studied using near UV-vis light. The photooxidation process continued even after the total consumption of the sensitizer, possibly due to the excitation of the ketyl groups formed during the first stages of the process. The rate of oxidation, as well as the formation of hydroxy, peroxy, and ketyl groups was faster for polymers with larger ester groups. The decrease of the molecular weight of the degradated polymers was also larger for the hexyl substituted polymer. The side-chain size effect was attributed to the larger amount of secondary hydrogens available for abstraction by the triplet state of thioxanthone, present in the larger ester groups. The lower glass transition temperature of the hexyl substituted polymer allows a better diffusion of oxygen to the deeper layers of the films that also contributes to the faster photodegradation rate. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 1283-1288, 2010
Resumo:
The effects of antioxidants and stabilizers on the oxidative degradation of polyolefins (low density polyethylene [LDPE] and polypropylene [PPJ have been studied after subjecting to prior high temperature processing treatments. The changes in the both chemical and physical properties of unstabilized polymers occurring during processing were found to be strongly dependent on the amount of oxygen present in the mixer. Subsequent thermal and photo-oxidation showed very similar characteristics and the chromophore primarily responsible for:both thermo and photooxidative degradation of unstabilized polymers was found to be hydroperoxide formed during processing. Removal of hydroperoxide by heat treatment in an inert atmosphere although increasing ketonic carbonyl concentration, markedly decreased the rate of photo-oxidation, introducing an induction period similar to that of an unprocessed sample. It was concluded that hydroperoxides are the most important initiators in normally processed polymers during the early stages of photo-oxidation. Antioxidants such as metal dithiocarbamates which act by destroying peroxides into non-radica1 products were found to be efficient melt stabilizers for polyolefins and effective UV stabilizers during the initial photo-oxidation stage, whilst a phenolic antioxidant, n-octadecyl-3-(3',5'-di-terbutyl 4'hydroxypheny1) propionate (Irganox 1076) retarded photo-oxidation rate in the later stages. A typical 'UV absorber' 2-hydroxy-4-octyloxy-benzophenone (HOBP) has a minor thermal antioxidant action but retarded photo-oxidation at all stages. A substituated piperidine derivative, Bis [2.2.6.6-tetramethylpiperidlnyl-4] sebacate (Tinuvin 770) behaved as an pro-oxidant during thermal oxidation of polyolefins but was an effective stabilizer against UV light. The UV absorber, HOBP synergised effectively with both peroxide decomposing antioxidants (metal dithiocarbamates) and a chain-breaking antioxidant (Irganox 1076) during photo-oxidation of the poymers studed whereas the combined effect was additive during thermal oxidation. By contrast, the peroxide decornposers and chain-breaking antioxidant (Irganox 1076) which were effective synergists during thermal oxidation of LDPE· were antagonistic during photo-oxidation. The mechanisms of these processes are discussed.
Resumo:
The weathering behavior of polystyrene and polystyrene-montmorillonite composites containing 2.5, 5.0, and 7.5 wt% of montmorillonite (MMT) was investigated. Samples were exposed to UV radiation for periods of up to similar to 12 weeks and their molecular weight, chemical changes, and mechanical properties were monitored as a function of time. The addition of MMT was shown to improve the photostability of all composites investigated, probably because of a screen effect against UV radiation and barrier effect against diffusion of oxygen promoted by the silicate layers of MMT. Scanning electron microscopy of fracture surfaces of degraded samples showed that there is a degraded layer near the surface that provided a recovery of tensile strength of the samples.
Resumo:
In intact chloroplasts isolated from mature pea leaves (Pisum sativum L.), the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was rapidly fragmented into several products upon illumination in the presence of 1 mM dithiothreitol (DTT). Very similar effects on LSU stability could be observed when illuminated chloroplasts were poisoned with cyanide which, like DTT, inhibits important plastid antioxidant enzymes, or when a light-dependent hydroxyl radical-producing system was added to the incubation medium. Moreover, DTT-stimulated light degradation of LSU was markedly delayed in the presence of scavengers of active oxygen species (AOS). It is therefore suggested that light degradation of LSU in the presence of DTT is mainly due to inhibition of the chloroplast antioxidant defense system and the subsequent accumulation of AOS in intact organelles. When chloroplasts were isolated from nonsenescent or senescent leaves, LSU remained very stable upon incubation without DTT, indicating that the antioxidant system was still functional in the isolated chloroplasts during leaf ageing. Our data support the notion that AOS might be important for the degradation of Rubisco in vivo under oxidative stress.
Resumo:
Even though light is the driving force in photosynthesis, it also can be harmful to plants. The water-splitting photosystem II is the main target for this light stress, leading to inactivation of photosynthetic electron transport and photooxidative damage to its reaction center. The plant survives through an intricate repair mechanism involving proteolytic degradation and replacement of the photodamaged reaction center D1 protein. Based on experiments with isolated chloroplast thylakoid membranes and photosystem II core complexes, we report several aspects concerning the rapid turnover of the D1 protein. (i) The primary cleavage step is a GTP-dependent process, leading to accumulation of a 23-kDa N-terminal fragment. (ii) Proteolysis of the D1 protein is inhibited below basal levels by nonhydrolyzable GTP analogues and apyrase treatment, indicating the existence of endogenous GTP tightly bound to the thylakoid membrane. This possibility was corroborated by binding studies. (iii) The proteolysis of the 23-kDa primary degradation fragment (but not of the D1 protein) is an ATP- and zinc-dependent process. (iv) D1 protein degradation is a multienzyme event involving a strategic (primary) protease and a cleaning-up (secondary) protease. (v) The chloroplast FtsH protease is likely to be involved in the secondary degradation steps. Apart from its significance for understanding the repair of photoinhibition, the discovery of tightly bound GTP should have general implications for other regulatory reactions and signal transduction pathways associated with the photosynthetic membrane.
Resumo:
Yellowing is an undesirable phenomenon that is common in people with white and grey hair. Because white hair has no melanin, the pigment responsible for hair colour, the effects of photodegradation are more visible in this type of hair. The origin of yellowing and its relation to photodegradation processes are not properly established, and many questions remain open in this field. In this work, the photodegradation of grey hair was investigated as a function of the wavelength of incident radiation, and its ultrastructure was determined, always comparing the results obtained for the white and black fibres present in grey hair with the results of white wool. The results presented herein indicate that the photobehaviour of grey hair irradiated with a mercury lamp or with solar radiation is dependent on the wavelength range of the incident radiation and on the initial shade of yellow in the sample. Two types of grey hair were used: (1) blended grey hair (more yellow) and (2) grey hair from a single-donor (less yellow). After exposure to a full-spectrum mercury lamp for 200 h, the blended white hair turned less yellow (the yellow-blue difference, Db(*) becomes negative, Db(*)=-6), whereas the white hair from the single-donor turned slightly yellower (Db(*)=2). In contrast, VIS+IR irradiation resulted in bleaching in both types of hair, whereas a thermal treatment (at 81 °C) caused yellowing of both types of hair, resulting in a Db(*)=3 for blended white hair and Db(*)=9 for single-donor hair. The identity of the yellow chromophores was investigated by UV-Vis spectroscopy. The results obtained with this technique were contradictory, however, and it was not possible to obtain a simple correlation between the sample shade of yellow and the absorption spectra. In addition, the results are discussed in terms of the morphology differences between the pigmented and non-pigmented parts of grey hair, the yellowing and bleaching effects of grey hair, and the occurrence of dark-follow reactions.
Resumo:
Ofloxacin is an antimicrobial agent frequently found in significant concentrations in wastewater and surface water. Its continuous introduction into the environment is a potential risk to non-target organisms or to human health. In this study, ofloxacin degradation by UV/TiO2 and UV/TiO2/H2O2, antimicrobial activity (E. coli) of samples subjected to these processes, and by-products formed were evaluated. For UV/TiO2, the degradation efficiency was 89.3% in 60 min of reaction when 128 mg L(-1) TiO2 were used. The addition of 1.68 mmol L(-1) hydrogen peroxide increased degradation to 97.8%. For UV/TiO2, increasing the catalyst concentration from 4 to 128 mg L(-1) led to an increase in degradation efficiency. For both processes, the antimicrobial activity was considerably reduced throughout the reaction time. The structures of two by-products are presented: m/z 291 (9-fluoro-3-methyl-10-(methyleneamino)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid) and m/z 157 ((Z)-2-formyl-3-((2-oxoethyl)imino)propanoic acid).
Resumo:
Composite resins might be susceptible to degradation and staining when in contact with some foods and drinks. This study evaluated color alteration and changes in microhardness of a microhybrid composite after immersion in different colored foods and determined whether there was a correlation between these two variables. Eighty composite disks were randomly divided into 8 experimental groups (n = 10): kept dry; deionized water; orange juice; passion fruit juice; grape juice; ketchup; mustard and soy sauce. The disks were individually immersed in their respective test substance at 37 ºC, for a period of 28 days. Superficial analysis of the disk specimens was performed by taking microhardness measurements (Vickers, 50 g load for 45 seconds) and color alterations were determined with a spectrophotometer (CINTRA 10- using a CIEL*a*b* system, 400-700 nm wavelength, illuminant d65 and standard observer of 2º) at the following times: baseline (before immersion), 1, 7, 14, 21 and 28 days. Results were analyzed by ANOVA and Tukey's test (p < 0.05). Both variables were also submitted to Pearson's correlation test (p < 0.05). The passion fruit group underwent the greatest microhardness change, while the mustard group suffered the greatest color alteration. Significant positive correlation was found between the two variables for the groups deionized water, grape juice, soy sauce and ketchup. Not all color alteration could be associated with surface degradation.
Resumo:
Electrochemical removals of color and organic load from solutions containing the dye reactive orange 16 (RO16) were performed in an electrochemical flow-cell, using a platinum working electrode. The influence of the process variables flow-rate, such as NaCl concentration, applied potential and solution pH, were studied. The best color removal achieved was 93% (λ = 493 nm) after 60 min at 2.2 V vs. RHE electrolysis, using 1.00 g L-1 NaCl as supporting electrolyte. The rises in the concentration of NaCl and applied potential increased the color removal rate. The best total organic carbon removal (57%) was obtained at 1.8 V, without the separating membrane, indicating that the ideal conditions for the color removal are not necessarily the same as those to remove the total organic carbon. The degradation efficiency decreased with the solution pH decrease.
Resumo:
Polyethyleneglycol (PEG) was photooxidized in a photo-Fenton system and results compared with the dark reaction. The products were analysed using GPC and HPLC. In the absence of light, PEG samples needed 490 min to reduce their
w by 50%, whereas under UV irradiation, only 10 min were necessary. The exponential decay of
w with a concomitant increase in polydispersity and number of average chain scission, characterized a random chain scission mechanism. The degradation products of PEG in both systems showed the presence of lower molecular weight products, including smaller ethyleneglycols and formic acid. The mechanism involves consecutive processes, were the larger ethyleneglycols give rise, successively, to smaller ones. This suggests that the mechanism involves successive scissions of the polymer chain. Irradiated samples decomposed faster than those kept in the dark This study proves that the foto-Fenton method associated with UV-light is a good reactant for PEG photodegradation.
Resumo:
The photocatalytic degradation of phenol in aqueous suspensions of TiO2 under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen-Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.
Resumo:
This work describes a photo-reactor to perform in line degradation of organic compounds by photo-Fenton reaction using Sequential Injection Analysis (SIA) system. A copper phthalocyanine-3,4',4²,4²¢-tetrasulfonic acid tetrasodium salt dye solution was used as a model compound for the phthalocyanine family, whose pigments have a large use in automotive coatings industry. Based on preliminary tests, 97% of color removal was obtained from a solution containing 20 µmol L-1 of this dye.