905 resultados para PHOTONIC WIRES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a comprehensive numerical study on the all-optical wavelength conversion based on the degenerate four-wave-mixing with continuous-wave pumping in the silicon nanowire waveguide. It is well known that the conversion efficiency and the 3-dB bandwidth can be greatly affected by the phase-matching condition. Through proper design of the waveguide cross-section, its dispersion property can be adjusted to satisfy the phase-matching condition and therefore effective wavelength conversion can be achieved in a large wavelength range. Generally, the group velocity dispersion plays a dominant role in the wavelength conversion. However, the fourth-order dispersion takes an important effect on the wavelength conversion when the group velocity dispersion is near the zero-point. Furthermore, the conversion efficiency and the 3-dB bandwidth can also be affected by the interactive length and the initial pump power. Through the numerical simulation, the optimal values for the interactive length and the initial pump power, which are functions of the propagation loss, are obtained to realize the maximum conversion efficiency. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the dispersion properties of nanometer-scaled silicon waveguides with channel and rib cross section around the optical fiber communication wavelength and systematically study their relationship with the key structural parameters of the waveguide. The simulation results show that the introduction of an extra degree of freedom in the rib depth enables the rib waveguide more flexible in engineering the group velocity dispersion (GVD) compared with the channel waveguide. Besides, we get the structural parameters of the waveguides that can realize zero-GVD at 1550 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-uniform nanowires with diameters down to 50 nm are directly taper-drawn from bulk glasses. Typical loss of these wires goes down to 0.1 dB/mm for single-mode operation. Favorable photonic properties such as high index for tight optical confinement in tellurite glass nanowires and photoluminescence for active devices in doped fluoride and phosphate glass nanowires are observed. Supporting high-index tellurite nanowires with solid substrates (such as silica glass and MgF2 crystal) and assembling low-loss microcoupler with these wires are also demonstrated. Photonic nanowires demonstrated in this work may open up vast opportunities for making versatile building blocks for future micro- and nanoscale photonic circuits and components. (c) 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing. CNTs have attracted significant research interest because they can be functionalized for a particular chemical, yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing. So far, however, utilizing their optical properties for this purpose has proven to be challenging. We demonstrate the use of localized surface plasmons generated on a nanostructured thin film, resembling a large array of nano-wires, to detect changes in the optical properties of the CNTs. Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature. The demonstrated methodology results additionally in a new, electrically passive, optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBa2Cu3O7-x wires have been extruded with 2 and 5 wt.% of hydroxy propyl methylcellulose (HPMC) as binder. Both sets of wires sintered below 930°C have equiaxed grains while the wires sintered above this temperature have elongated grains. In the temperature range which gives equiaxed grains, the wires extruded with 5 wt.% HPMC have higher grain size and density. Cracks along the grain boundaries are often observed in the wires having elongated grains. Critical current density, Jc, increases initially, reaches a peak and then decreases with the sintering temperature. The sintering temperature giving a peak in Jc strongly depends on the heat treatment scheme for the wires extruded with 5 wt.% HPMC. TEM studies show that defective layers are formed along grain boundaries for the wires extruded with 5 wt.% HPMC after 5 h oxygenation. After 55 h oxygenation, the defective layers become more localised and grain boundaries adopt an overall cleaner appearance. Densification with equiaxed grains and clean grain boundaries produces the highest Jc's for polycrystalline YBa2Cu3O7 wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBCO wires which consist of well oriented plate-like fine grains are fabricated using a moving furnace to achieve higher mechanical strength. Melt-texturing experiments have been undertaken on YBCO wires with two different compositions: YBa1.5Cu2.9O7-x, and YBa1.8Cu3.0O7-x. Wires are extruded from a mixture of precursor powders (formed by a coprecipitation process) then textured by firing in a moving furnace. Size of secondary phases such as barium cuprate and copper oxide, and overall composition of the sample affect the orientation of the fine grains. At zero magnetic field, the YBa1.5Cu2.9O7-x wire shows the highest critical current density of 1,450 Acm-2 and 8,770 Acm-2 at 77K and 4.2K, respectively. At 1 T, critical current densities of 30 Acm-2 and 200 Acm-2, respectively, are obtained at 77K and 4.2K. Magnetisation curves are also obtained for one sample to evaluate critical current density using the Bean model. Analysis of the microstructure indicates that the starting composition of the green body significantly affects the achievement of grain alignment via melt-texturing processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that plasmas can minimize the adverse Gibbs-Thompson effect in thin quantum wire growth. The model of Si nanowirenucleation includes the unprecedented combination of the plasma sheath, ion- and radical-induced species creation and heating effects on the surface and within an Au catalyst nanoparticle. Compared to neutral gas thermal processes, much thinner, size-selective wires can nucleate at the same temperature and pressure while much lower energy and matter budget is needed to grow same-size wires. This explains the experimental observations and may lead to energy- and matter-efficient synthesis of a broader range of one-dimensional quantum structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the lowerature inductively coupled plasma-enabled synthesis of ultralong (up to several millimeters in length) SiO2 nanowires, which were otherwise impossible to synthesize without the presence of a plasma. Depending on the process conditions, the nanowires feature straight, helical, or branched morphologies. The nanowires are amorphous, with a near-stoichiometric elemental composition ([O] / [Si] =2.09) and are very uniform throughout their length. The role of the ionized gas environment is discussed and the growth mechanism is proposed. These nanowires are particularly promising for nanophotonic applications where long-distance and channelled light transmission and polarization control are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biocompatible method for fabricating three-dimensional photonic crystals opens up unique opportunities for structurally coloured biodegradable materials, but also for implantable biosensing and targeted therapeutics on the microscale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compulsators are power sources of choice for use in electromagnetic launchers and railguns. These devices hold the promise of reducing unit costs of payload to orbit. In an earlier work, the author had calculated the current distribution in compulsator wires by considering the wire to be split into a finite number of separate wires. The present work develops an integral formulation of the problem of current distribution in compulsator wires which leads to an integrodifferential equation. Analytical solutions, including those for the integration constants, are obtained in closed form. The analytical solutions present a much clearer picture of the effect of various input parameters on the cross-sectional current distribution and point to ways in which the desired current density distribution can be achieved. Results are graphically presented and discussed, with particular reference to a 50-kJ compulsator in Bangalore. Finite-element analysis supports the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a short review of the work on the Lecher wire method of wavelength measurement, this paper describes in detail the wave form of current distribution along wires under a variety of terminal conditions of length and impedances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the renormalization group flows of the two terminal conductance of a superconducting junction of two Luttinger liquid wires. We compute the power laws associated with the renormalization group flow around the various fixed points of this system using the generators of the SU(4) group to generate the appropriate parametrization of an matrix representing small deviations from a given fixed point matrix [obtained earlier in S. Das, S. Rao, and A. Saha, Phys. Rev. B 77, 155418 (2008)], and we then perform a comprehensive stability analysis. In particular, for the nontrivial fixed point which has intermediate values of transmission, reflection, Andreev reflection, and crossed Andreev reflection, we show that there are eleven independent directions in which the system can be perturbed, which are relevant or irrelevant, and five directions which are marginal. We obtain power laws associated with these relevant and irrelevant perturbations. Unlike the case of the two-wire charge-conserving junction, here we show that there are power laws which are nonlinear functions of V(0) and V(2kF) [where V(k) represents the Fourier transform of the interelectron interaction potential at momentum k]. We also obtain the power law dependence of linear response conductance on voltage bias or temperature around this fixed point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss micro ring resonator based optical logic gates using Kerr-type nonlinearity. Resonant wavelength selectivity is one key factor in achieving the desired gate. Based on basic gates like AND gate, OR gate etc. We proceed to propose a 3-bit binary adder circuit.Due to the presence of more than a single wavelength, the system gets complicated as we increase the number of components in the circuit. Hence it has been observed that for efficient designing and functioning of digital circuits in optical domain, we need a device which can give single wavelength output, filtering out all other wavelengths and at the same time preserve the digital characteristics of the output. We propose such filter-preserver device based on micro ring resonator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the design of a windmill using a sail type rotor, there arose a need to protect the structure against damage due to overloading in excessive winds. This need was satisfied by using a novel form of load limiter in the support system of sails of the windmill. This note will analyze the load capacity wires so that one can design wires for any specified limit load.