979 resultados para PHOTON IMAGING CAMERA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal circuits in the retina analyze images according to qualitative aspects such as color or motion, before the information is transmitted to higher visual areas of the brain. One example, studied for over the last four decades, is the detection of motion direction in ‘direction selective’ neurons. Recently, the starburst amacrine cell, one type of retinal interneuron, has emerged as an essential player in the computation of direction selectivity. In this study the mechanisms underlying the computation of direction selective calcium signals in starburst cell dendrites were investigated using whole-cell electrical recordings and two-photon calcium imaging. Analysis of the somatic electrical responses to visual stimulation and pharmacological agents indicated that the directional signal (i) is not computed presynaptically to starburst cells or by inhibitory network interactions. It is thus computed via a cell-intrinsic mechanism, which (ii) depends upon the differential, i.e. direction selective, activation of voltage-gated channels. Optically measuring dendritic calcium signals as a function of somatic voltage suggests (iii) a difference in resting membrane potential between the starburst cell’s soma and its distal dendrites. In conclusion, it is proposed that the mechanism underlying direction selectivity in starburst cell dendrites relies on intrinsic properties of the cell, particularly on the interaction of spatio-temporally structured synaptic inputs with voltage-gated channels, and their differential activation due to a somato-dendritic difference in membrane potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) - represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The evolutionary state of the neutron star is investigated by means of deep dedicated observations obtained with the XMM-Newton Observatory, the ESO Very Large Telescope, as well as publicly available gamma-ray data from the Fermi Space Telescope and the AGILE Mission. The observations confirm previous expectations and reveal a unique type of object. The source, which is likely within the Carina Nebula (N-H = 2.6x10(21) cm(-2)), has a spectrum that is both thermal and soft, with kT(infinity) = 135 eV. Non-thermal (magnetospheric) emission is not detected down to 1% (3 sigma, 0.1-12 keV) of the source luminosity. Significant deviations (absorption features) from a simple blackbody model are identified in the spectrum of the source around energies 0.6 keV and 1.35 keV. While the former deviation is likely related to a local oxygen overabundance in the Carina Nebula, the latter can only be accounted for by an additional spectral component, which is modelled as a Gaussian line in absorption with EW = 91 eV and sigma = 0.14 keV (1 sigma). Furthermore, the optical counterpart is fainter than m(V) = 27 (2 sigma) and no gamma-ray emission is significantly detected by either the Fermi or AGILE missions. Very interestingly, while these characteristics are remarkably similar to those of the M7 or the only RRAT so far detected in X-rays, which all have spin periods of a few seconds, we found intriguing evidence of very rapid rotation, P = 18.6ms, at the 4 sigma confidence level. We interpret these new results in the light of the observed properties of the currently known neutron star population, in particular those of standard rotation-powered pulsars, recycled objects, and CCOs. We find that none of these scenarios can satisfactorily explain the collective properties of 2XMM J104608.7-594306, although it may be related to the still poorly known class of Galactic anti-magnetars. Future XMM-Newton data, granted for the next cycle of observations (AO11), will help us to improve our current observational interpretation of the source, enabling us to significantly constrain the rate of pulsar spin down.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents the development of chip-based technology for informative in vitro cancer diagnostics. In the first part of this thesis, I will present my contribution in the development of a technology called “Nucleic Acid Cell Sorting (NACS)”, based on microarrays composed of nucleic acid encoded peptide major histocompatibility complexes (p/MHC), and the experimental and theoretical methods to detect and analyze secreted proteins from single or few cells.

Secondly, a novel portable platform for imaging of cellular metabolism with radio probes is presented. A microfluidic chip, so called “Radiopharmaceutical Imaging Chip” (RIMChip), combined with a beta-particle imaging camera, is developed to visualize the uptake of radio probes in a small number of cells. Due to its sophisticated design, RIMChip allows robust and user-friendly execution of sensitive and quantitative radio assays. The performance of this platform is validated with adherent and suspension cancer cell lines. This platform is then applied to study the metabolic response of cancer cells under the treatment of drugs. Both cases of mouse lymphoma and human glioblastoma cell lines, the metabolic responses to the drug exposures are observed within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with changes in receptor tyrosine kinase signaling.

The last parts of this thesis present summaries of ongoing projects: development of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET imaging, the one-bead-one-compound combinatorial library method is used, coupled with iterative screening. The performance of the agent is quantitatively validated with cell-based fluorescent assays. In the case of monitoring the metabolism of primary glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of oncoprotein, or were treated with different kinds of drugs to study the metabolic heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug treatments, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.

The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE Despite different existing methods, monitoring of free muscle transfer is still challenging. In the current study we evaluated our clinical setting regarding monitoring of such tissues, using a recent microcirculation-imaging camera (EasyLDI) as an additional tool for detection of perfusion incompetency. PATIENTS AND METHODS This study was performed on seven patients with soft tissue defect, who underwent reconstruction with free gracilis muscle. Beside standard monitoring protocol (clinical assessment, temperature strips, and surface Doppler), hourly EasyLDI monitoring was performed for 48 hours. Thereby a baseline value (raised flap but connected to its vascular bundle) and an ischaemia perfusion value (completely resected flap) were measured at the same point. RESULTS The mean age of the patients, mean baseline value, ischaemia value perfusion were 48.00 ± 13.42 years, 49.31 ± 17.33 arbitrary perfusion units (APU), 9.87 ± 4.22 APU, respectively. The LDI measured values in six free muscle transfers were compatible with hourly standard monitoring protocol, and normalized LDI values significantly increased during time (P < 0.001, r = 0.412). One of the flaps required a return to theatre 17 hours after the operation, where an unsalvageable flap loss was detected. All normalized LDI values of this flap were under the ischaemia perfusion level and the trend was significantly descending during time (P < 0.001, r = -0.870). CONCLUSION Due to the capability of early detection of perfusion incompetency, LDI may be recommended as an additional post-operative monitoring device for free muscle flaps, for early detection of suspected failing flaps and for validation of other methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report discusses findings of a case study into "Road Construction Safety" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Queensland Department of Transport and Main Roads (QTMR) has taken a leadership role in developing a safer working environment for road construction workers. In the past decades, a range of initiatives have been introduced to contribute to improved performance in this area. Several initiatives have been undertaken by QTMR as part of their overarching commitment to safety. Three such initiatives form the basis for this case study investigation, in order to better illustrate the nature of R&D investment and its impact on day-to-day operations and the supply chain. These are the development and implementation of: (i) the Mechanical Traffic Aid: (ii) the Thermal Imaging Camera; and (iii) the Trailer-based CCTV (camera). This case study should be read in conjunction with Part 1 of this suite of reports.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During food drying, many other changes occur simultaneously, resulting in an improved overall quality. Among the quality attributes, the structure and its corresponding color influence directly or indirectly other properties of food. In addition, these quality attributes are affected by process conditions, material components and the raw structure of the foodstuff. In this work, the temperature distribution within food materials during microwave drying has been taken into consideration to observe its role in color modification. In order to determine the temperature distribution of microwave-dried food (apple), a thermal imaging camera has been used. The image acquired from the digital camera has been analysed using image J software in order to get the color change of fresh and dried apple. The results show that temperature distribution plays an important role in determining the quality of the food. The thermal imaging camera was deployed to observe the temperature distribution within food materials during drying. It is clearly observed from the higher value of (ERGB =102) and the uneven color change that uneven temperature distribution can influence customer perceptions of the quality of dried food. Simulation of a mathematical model of temperature distribution during microwave drying can make it possible to predict the colour and texture of the microwaved food.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microwave power is used for heating and drying processes because of its faster and volumetric heating capability. Non-uniform temperature distribution during microwave application is a major drawback of these processes. Intermittent application of microwave potentially reduces the impact of non-uniformity and improves energy efficiency by redistributing the temperature. However, temperature re-distribution during intermittent microwave heating has not been investigated adequately. Consequently, in this study, a coupled electromagnetic with heat and mass transfer model was developed using the finite element method embedded in COMSOL-Multyphysics software. Particularly, the temperature redistribution due to intermittent heating was investigated. A series of experiments were performed to validate the simulation. The test specimen was an apple and the temperature distribution was closely monitored by a TIC (Thermal Imaging Camera). The simulated temperature profile matched closely with thermal images obtained from experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new technique based on luminescent molecular sensors is utilized in these series of experiments for measurement of temperatures in material removal processes. 2-Dimensional machining of metals at low speeds and surface grinding configurations are used as the model experimental systems to understand the efficacy of this experimental technique. The experiments were conducted with a series of luminescent sensors and binder combinations for the temperature measurement. The luminescence of the sensor was measured through a charge-coupled device imaging camera, and intensive calibration exercises were performed on these sensors. Excellent agreement in the temperature fields measured through this new experimental approach and traditional infrared thermography is seen here. This technique offers the unique capability of allowing measurement of temperatures in the presence of a lubricant, akin to manufacturing conditions in situ. Extension of the technique to measure the temperature field at the tool-chip contact is described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel open waveguide cavity resonator is presented for the combined variable frequency microwave curing of bumps, underfills and encapsulants, as well as the alignment of devices for fast flip-chip assembly, direct chip attach (DCA) or wafer-scale level packaging (WSLP). This technology achieves radio frequency (RF) curing of adhesives used in microelectronics, optoelectronics and medical devices with potential simultaneous micron-scale alignment accuracy and bonding of devices. In principle, the open oven cavity can be fitted directly onto a flip-chip or wafer scale bonder and, as such, will allow for the bonding of devices through localised heating thus reducing the risk to thermally sensitive devices. Variable frequency microwave (VFM) heating and curing of an idealised polymer load is numerically simulated using a multi-physics approach. Electro-magnetic fields within a novel open ended microwave oven developed for use in micro-electronics manufacturing applications are solved using a dedicated Yee scheme finite-difference time-domain (FDTD) solver. Temperature distribution, degree of cure and thermal stresses are analysed using an Unstructured Finite Volume method (UFVM) multi-physics package. The polymer load was meshed for thermophysical analysis, whilst the microwave cavity - encompassing the polymer load - was meshed for microwave irradiation. The two solution domains are linked using a cross mapping routine. The principle of heating using the evanescent fringing fields within the open-end of the cavity is demonstrated. A closed loop feedback routine is established allowing the temperature within a lossy sample to be controlled. A distribution of the temperature within the lossy sample is obtained by using a thermal imaging camera.