969 resultados para PERSISTENT HYPERINSULINEMIC HYPOGLYCEMIA
Resumo:
The ATP-sensitive potassium channel (KATP) regulates insulin secretion in pancreatic β cells. Loss of functional KATP channels because of mutations in either the SUR1 or Kir6.2 channel subunit causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We investigated the molecular mechanism by which a single phenylalanine deletion in SUR1 (ΔF1388) causes PHHI. Previous studies have shown that coexpression of ΔF1388 SUR1 with Kir6.2 results in no channel activity. We demonstrate here that the lack of functional expression is due to failure of the mutant channel to traffic to the cell surface. Trafficking of KATP channels requires that the endoplasmic reticulum-retention signal, RKR, present in both SUR1 and Kir6.2, be shielded during channel assembly. To ask whether ΔF1388 SUR1 forms functional channels with Kir6.2, we inactivated the RKR signal in ΔF1388 SUR1 by mutation to AAA (ΔF1388 SUR1AAA). Inactivation of similar endoplasmic reticulum-retention signals in the cystic fibrosis transmembrane conductance regulator has been shown to partially overcome the trafficking defect of a cystic fibrosis transmembrane conductance regulator mutation, ΔF508. We found that coexpression of ΔF1388 SUR1AAA with Kir6.2 led to partial surface expression of the mutant channel. Moreover, mutant channels were active. Compared with wild-type channels, the mutant channels have reduced ATP sensitivity and do not respond to stimulation by MgADP or diazoxide. The RKR → AAA mutation alone has no effect on channel properties. Our results establish defective trafficking of KATP channels as a molecular basis of PHHI and show that F1388 in SUR1 is critical for normal trafficking and function of KATP channels.
Resumo:
Gastric bypass surgery is an effective treatment for morbid obesity, allowing a substantial weight loss together with an improvement of the cardiovascular and metabolic comorbidities, particularly the glucose control. However, after gastric bypassing, an imbalance between sensitivity and insulin secretion may be observed. This disorder gives rise to hyperinsulinemic hypoglycemia (late dumping syndrome) and is characterized by a dizziness that can be disabling. This problem must be distinguished from conditions provoking similar symptoms, as for instance the early dumping syndrome and the food restriction-related hypoglycemia. Since all these conditions need a particular management, their distinction is essential.
Resumo:
Recent reports point out the importance of the complex GK-GKRP in controlling glucose and lipid homeostasis. Several GK mutations affect GKRP binding, resulting in permanent activation of the enzyme. We hypothesize that hepatic overexpression of a mutated form of GK, GKA456V, described in a patient with persistent hyperinsulinemic hypoglycemia of infancy (PHHI) and could provide a model to study the consequences of GK-GKRP deregulation in vivo. GKA456V was overexpressed in the liver of streptozotocin diabetic mice. Metabolite profiling in serum and liver extracts, together with changes in key components of glucose and lipid homeostasis, were analyzed and compared to GK wild-type transfected livers. Cell compartmentalization of the mutant but not the wild-type GK was clearly affected in vivo, demonstrating impaired GKRP regulation. GKA456V overexpression markedly reduced blood glucose in the absence of dyslipidemia, in contrast to wild-type GK-overexpressing mice. Evidence in glucose utilization did not correlate with increased glycogen nor lactate levels in the liver. PEPCK mRNA was not affected, whereas the mRNA for the catalytic subunit of glucose-6-phosphatase was upregulated ~4 folds in the liver of GKA456V-treated animals, suggesting that glucose cycling was stimulated. Our results provide new insights into the complex GK regulatory network and validate liver-specific GK activation as a strategy for diabetes therapy.
Resumo:
Objective: To review the presentation of hyperinsulinemic hypoglycemia of the infancy (HHI), its treatment and histology in Brazilian pediatric endocrinology sections. Materials and method: The protocol analyzed data of birth, laboratory results, treatment, surgery, and pancreas histology. Results: Twenty-five cases of HHI from six centers were analyzed: 15 male, 3/25 born by vaginal delivery. The average age at diagnosis was 10.3 days. Glucose and insulin levels in the critical sample showed an average of 24.7 mg/dL and 26.3 UI/dL. Intravenous infusion of the glucose was greater than 10 mg/kg/min in all cases (M:19,1). Diazoxide was used in 15/25 of the cases, octreotide in 10, glucocorticoid in 8, growth hormone in 3, nifedipine in 2 and glucagon in 1. Ten of the cases underwent pancreatectomy and histology results showed the diffuse form of disease. Conclusion: This is the first critic review of a Brazilian sample with congenital HHI. Arq Bras Endocrinol Metab. 2012; 56(9): 666-71
Resumo:
Background: The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results: We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion: We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction.
Order-Disorder Transitions Govern Kinetic Cooperativity and Allostery of Monomeric Human Glucokinase
Resumo:
Glucokinase (GCK) catalyzes the rate-limiting step of glucose catabolism in the pancreas, where it functions as the body's principal glucose sensor. GCK dysfunction leads to several potentially fatal diseases including maturity-onset diabetes of the young type II (MODY-II) and persistent hypoglycemic hyperinsulinemia of infancy (PHHI). GCK maintains glucose homeostasis by displaying a sigmoidal kinetic response to increasing blood glucose levels. This positive cooperativity is unique because the enzyme functions exclusively as a monomer and possesses only a single glucose binding site. Despite nearly a half century of research, the mechanistic basis for GCK's homotropic allostery remains unresolved. Here we explain GCK cooperativity in terms of large-scale, glucose-mediated disorder-order transitions using 17 isotopically labeled isoleucine methyl groups and three tryptophan side chains as sensitive nuclear magnetic resonance (NMR) probes. We find that the small domain of unliganded GCK is intrinsically disordered and samples a broad conformational ensemble. We also demonstrate that small-molecule diabetes therapeutic agents and hyperinsulinemia-associated GCK mutations share a strikingly similar activation mechanism, characterized by a population shift toward a more narrow, well-ordered ensemble resembling the glucose-bound conformation. Our results support a model in which GCK generates its cooperative kinetic response at low glucose concentrations by using a millisecond disorder-order cycle of the small domain as a "time-delay loop," which is bypassed at high glucose concentrations, providing a unique mechanism to allosterically regulate the activity of human GCK under physiological conditions.
Resumo:
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Resumo:
The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a rare autosomal dominant disease manifested by hypoglycemic symptoms triggered by fasting or high-protein meals, and by elevated serum ammonia. HI/HA is the second most common cause of hyperinsulinemic hypoglycemia of infancy, and it is caused by activating mutations in GLUD1, the gene that encodes mitochondrial enzyme glutamate dehydrogenase (GDH). Biochemical evaluation, as well as direct sequencing of exons and exon-intron boundary regions of the GLUD1 gene, were performed in a 6-year old female patient presenting fasting hypoglycemia and hyperammonemia. The patient was found to be heterozygous for one de novo missense mutation (c.1491A>G; p.Il497Met) previously reported in a Japanese patient. Treatment with diazoxide 100 mg/day promoted complete resolution of the hypoglycemic episodes. Arq Bras Endocrinol Metab. 2012;56(8):485-9
Resumo:
OBJETIVO: Rever a apresentação dos casos de hipoglicemia hiperinsulinêmica da infância (HHI), tratamento e histologia nos serviços de endocrinologia pediátrica no Brasil. MATERIAIS E MÉTODO: Os serviços receberam protocolo para resgatar dados de nascimento, resultados laboratoriais, tipo de tratamento instituído, necessidade de pancreatectomia e histologia. RESULTADOS: Vinte e cinco casos de HHI de seis centros foram resgatados, 15 do sexo masculino, 3/25 nascidos de parto normal. A mediana de idade do diagnóstico foi 10,3 dias. As dosagens de glicose e insulina na amostra sérica crítica apresentaram mediana de 24,7 mg/dL e 26,3 UI/dL. A velocidade de infusão de glicose endovenosa foi superior a 10 mg/kg/min em todos os casos (M:19,1). Diazóxido foi utilizado em 15/25, octreotide em 10, corticoide em 8, hormônio de crescimento em 3, nifedipina em 2 e glucagon em 1. Quarenta por cento (10/25) foram pancreatectomizados, nos quais a análise histológica revelou a forma difusa da patologia. CONCLUSÃO: Primeira análise crítica de uma amostra brasileira de portadores de HHI congênita. Arq Bras Endocrinol Metab. 2012;56(9):666-71
Resumo:
We report the case of a 59-year-old women with idiopathic insulin auto-immune syndrome, a rare cause of endogenous hyperinsulinemic hypoglycemia. It is characterized by extremely high levels of insulin in the presence of high titers of insulin antibodies despite the absence of previous insulin injections. Early postprandial increase in glucose concentrations due to impaired insulin action resulting from the buffering effect of the antibodies and late postprandial hypoglycemia as a consequence of the dissociation of insulin from the antibodies was observed. A correct diagnosis is important to avoid unnecessary investigations and surgery in these patients who are best treated conservatively - with a good prognosis - by fractionating carbohydrate intake during the day.
Resumo:
UNLABELLED (111)In-DOTA-exendin-4 SPECT/CT has been shown to be highly efficient in the detection of insulinomas. We aimed at determining whether novel PET/CT imaging with [Nle(14),Lys(40)(Ahx-DOTA-(68)Ga)NH2]exendin-4 ((68)Ga-DOTA-exendin-4) is feasible and sensitive in detecting benign insulinomas. METHODS (68)Ga-DOTA-exendin-4 PET/CT and (111)In-DOTA-exendin-4 SPECT/CT were performed in a randomized cross-over order on 5 patients with endogenous hyperinsulinemic hypoglycemia. The gold standard for comparison was the histologic diagnosis after surgery. RESULTS In 4 patients histologic diagnosis confirmed a benign insulinoma, whereas one patient refused surgery despite a positive (68)Ga-DOTA-exendin-4 PET/CT scan. In 4 of 5 patients, previously performed conventional imaging (CT or MR imaging) was not able to localize the insulinoma. (68)Ga-DOTA-exendin-4 PET/CT correctly identified the insulinoma in 4 of 4 patients, whereas (111)In-DOTA-exendin-4 SPECT/CT correctly identified the insulinoma in only 2 of 4 patients. CONCLUSION These preliminary data suggest that the use of (68)Ga-DOTA-exendin-4 PET/CT in detecting hidden insulinomas is feasible.
Resumo:
OBJECTIVE: To investigate the effects of neonatal hypoglycemia on physical growth and neurocognitive function.Study design: A systematic detection of hypoglycemia (<2.6 mmol/L or 47 mg/dL) was carried out in 85 small-for-gestational-age preterm neonates. Prospective serial evaluations of physical growth and psychomotor development were performed. Retrospectively, infants were grouped according to their glycemic status. RESULTS: The incidence of hypoglycemia was 72.9%. Infants with repeated episodes of hypoglycemia had significantly reduced head circumferences and lower scores in specific psychometric tests at 3.5 years of age. Hypoglycemia also caused reduced head circumferences at 18 months and lower psychometric scores at 5 years of age. Infants with moderate recurrent hypoglycemia had lower scores at 3.5 and 5 years of age compared with the group of infants who had 1 single severe hypoglycemic episode. CONCLUSION: Recurrent episodes of hypoglycemia were strongly correlated with persistent neurodevelopmental and physical growth deficits until 5 years of age. Recurrent hypoglycemia also was a more predictable factor for long-term effects than the severity of a single hypoglycemic episode. Therefore repetitive blood glucose monitoring and rapid treatment even for mild hypoglycemia are recommended for small-for-gestational-age infants in the neonatal period.
Resumo:
Hypoglycemia is a characteristic condition of early lactation dairy cows and is subsequently dependent on, and may affect, metabolism in the liver. The objective of the present study was to investigate the effects of induced hypoglycemia, maintained for 48 h, on metabolic parameters in plasma and liver of mid-lactation dairy cows. The experiment involved 3 treatments, including a hyperinsulinemic hypoglycemic clamp (HypoG, n=6) to obtain a glucose concentration of 2.5 mmol/L, a hyperinsulinemic euglycemic clamp (EuG, n=6) in which the effect of insulin was studied, and a control treatment with a 0.9% saline solution (NaCl, n=6). Blood samples for measurements of insulin, metabolites, and enzymes were taken at least once per hour. Milk yield was recorded and milk samples were collected before and after treatment. Liver biopsies were obtained before and after treatment to measure mRNA abundance by real-time, quantitative reverse transcription-PCR of 12 candidate genes involved in the main metabolic pathways. Milk yield decreased in HypoG and NaCl cows, whereas it remained unaffected in EuG cows. Energy-corrected milk yield (kg/d) was only decreased in HypoG cows. In plasma, concentration of beta-hydroxybutyrate decreased in response to treatment in EuG cows and was lower (0.41+/-0.04 mmol/L) on d 2 of the treatment compared with that in HypoG and NaCl cows (on average 0.61+/-0.03 mmol/L, respectively). Nonesterified fatty acids remained unaffected in all treatments. In the liver, differences between treatments for their effects were only observed in case of mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and glucose-6-phosphatase (G6PC). In HypoG, mRNA abundance of PEPCKm was upregulated, whereas in EuG and NaCl cows, it was downregulated. The EuG treatment downregulated mRNA expression of G6PC, a marked effect compared with the unchanged transcript expression in NaCl. The mRNA abundance of the insulin receptor remained unaffected in all treatments, and no significant treatment differences were observed for genes related to lipid metabolism. In conclusion, low glucose concentrations in dairy cows affect liver metabolism at a molecular level through upregulation of PEPCKm mRNA abundance. Metabolic regulatory events in the liver are directed, apart from hormones, by the level of metabolites, either in excess (e.g., free fatty acids) or in shortage (e.g., glucose).
Resumo:
The efficacy of the human papillomavirus type 16 (HPV-16)/HPV-18 AS04-adjuvanted vaccine against cervical infections with HPV in the Papilloma Trial against Cancer in Young Adults (PATRICIA) was evaluated using a combination of the broad-spectrum L1-based SPF10 PCR-DNA enzyme immunoassay (DEIA)/line probe assay (LiPA25) system with type-specific PCRs for HPV-16 and -18. Broad-spectrum PCR assays may underestimate the presence of HPV genotypes present at relatively low concentrations in multiple infections, due to competition between genotypes. Therefore, samples were retrospectively reanalyzed using a testing algorithm incorporating the SPF10 PCR-DEIA/LiPA25 plus a novel E6-based multiplex type-specific PCR and reverse hybridization assay (MPTS12 RHA), which permits detection of a panel of nine oncogenic HPV genotypes (types 16, 18, 31, 33, 35, 45, 52, 58, and 59). For the vaccine against HPV types 16 and 18, there was no major impact on estimates of vaccine efficacy (VE) for incident or 6-month or 12-month persistent infections when the MPTS12 RHA was included in the testing algorithm versus estimates with the protocol-specified algorithm. However, the alternative testing algorithm showed greater sensitivity than the protocol-specified algorithm for detection of some nonvaccine oncogenic HPV types. More cases were gained in the control group than in the vaccine group, leading to higher point estimates of VE for 6-month and 12-month persistent infections for the nonvaccine oncogenic types included in the MPTS12 RHA assay (types 31, 33, 35, 45, 52, 58, and 59). This post hoc analysis indicates that the per-protocol testing algorithm used in PATRICIA underestimated the VE against some nonvaccine oncogenic HPV types and that the choice of the HPV DNA testing methodology is important for the evaluation of VE in clinical trials. (This study has been registered at ClinicalTrials.gov under registration no. NCT00122681.).
Resumo:
OBJECTIVE: To screen for mutations in AMH and AMHR2 genes in patients with persistent Müllerian duct syndrome (PMDS). PATIENTS AND METHOD: Genomic DNA of eight patients with PMDS was obtained from peripheral blood leukocytes. Directed sequencing of the coding regions and the exon-intron boundaries of AMH and AMHR2 were performed. RESULTS: The AMH mutations p.Arg95*, p.Arg123Trp, c.556-2A>G, and p.Arg502Leu were identified in five patients; and p.Gly323Ser and p.Arg407* in AMHR2 of two individuals. In silico analyses of the novel c.556-2A>G, p.Arg502Leu and p.Arg407* mutations predicted that they were harmful and were possible causes of the disease. CONCLUSION: A likely molecular etiology was found in the eight evaluated patients with PMDS. Four mutations in AMH and two in AMHR2 were identified. Three of them are novel mutations, c.556-2A>G, and p.Arg502Leu in AMH; and p.Gly323Ser in AMHR2. Arq Bras Endocrinol Metab. 2012;56(8):473-8