102 resultados para PEPSIN
Resumo:
Purpose The purpose of this study was to investigate if pepsin measured in sputum is a useful marker of pulmonary aspiration secondary to gastroesophageal reflux (GER) in children. It is possible that the induced sputum procedure could cause GER and invalidate the results. The hypothesis stated that healthy children (those without history of respiratory or gastroesophageal symptoms) would not have pepsin detected in induced sputum. Methods Children attending surgical outpatients in the Royal Belfast Hospital for Sick Children (Belfast, Northern Ireland) were recruited. After spirometry, sputum was obtained by induction with hypertonic 3% saline. Spirometry was repeated, and complications were noted. An “in-house” enzyme-linked immunosorbent assay was used to measure pepsin concentration in sputum. The lower limit of detection of pepsin was 1.19 ng/mL. Results Children (n = 21) aged 4 to 16 years were recruited. Twenty children completed the study. No adverse effects were reported. Pepsin was detected in 17 (85%) of 20 sputum samples. Conclusions The act of sputum induction appears to induce physiologic GER in a healthy childhood population. The analysis of pepsin in sputum obtained by sputum induction is therefore not useful in the investigation of reflux-related respiratory disease.
Resumo:
Background Gastro-oesophageal reflux is common in children with cystic fibrosis (CF) and is thought to be associated with pulmonary aspiration of gastric contents. The measurement of pepsin in bronchoalveolar lavage (BAL) fluid has recently been suggested to be a reliable indicator of aspiration. The prevalence of pulmonary aspiration in a group of children with CF was assessed and its association with lung inflammation investigated. Methods This was a cross-sectional case–control study. BAL fluid was collected from individuals with CF (n=31) and healthy controls (n=7). Interleukin-8 (IL-8), pepsin, neutrophil numbers and neutrophil elastase activity levels were measured in all samples. Clinical, microbiological and lung function data were collected from medical notes. Results The pepsin concentration in BAL fluid was higher in the CF group than in controls (mean (SD) 24.4 (27.4) ng/ml vs 4.3 (4.0) ng/ml, p=0.03). Those with CF who had raised pepsin concentrations had higher levels of IL-8 in the BAL fluid than those with a concentration comparable to controls (3.7 (2.7) ng/ml vs 1.4 (0.9) ng/ml, p=0.004). Within the CF group there was a moderate positive correlation between pepsin concentration and IL-8 in BAL fluid (r=0.48, p=0.04). There was no association between BAL fluid pepsin concentrations and age, sex, body mass index z score, forced expiratory volume in 1 s or Pseudomonas aeruginosa colonisation status. Conclusions Many children with CF have increased levels of pepsin in the BAL fluid compared with normal controls. Increased pepsin levels were associated with higher IL-8 concentrations in BAL fluid. These data suggest that aspiration of gastric contents occurs in a subset of patients with CF and is associated with more pronounced lung inflammation.
Resumo:
Gastro-oesophageal reflux (GOR)-related aspiration is associated with respiratory disease, but the current "gold standard" investigation, the lipid-laden macrophage index (LLMI), is flawed. A specific marker of GOR-related aspiration should originate in the stomach, but not the lung. An assay to detect gastric pepsin in the bronchoalveolar lavage (BAL) of children was developed and validated.
Resumo:
Animal by-product meals have large variability in crude protein (CP) content and digestibility. In vivo digestibility procedures are precise but laborious, and in vitro methods could be an alternative to evaluate and classify these ingredients. The present study reports prediction equations to estimate the CP digestibility of meat and bone meal (MBM) and poultry by-product meal (PM) using the protein solubility in pepsin method (PSP). Total tract CP digestibility of eight MBM and eight PM samples was determined in dogs by the substitution method. A basal diet was formulated for dog maintenance, and sixteen diets were produced by mixing 70 % of the basal diet and 30 % of each tested meal. Six dogs per diet were used to determine ingredient digestibility. In addition, PSP of the MBM and PM samples was determined using three pepsin concentrations: 0·02, 0·002 and 0·0002 %. The CP content of MBM and PM ranged from 39 to 46 % and 57 to 69 %, respectively, and their mean CP digestibility by dogs was 76 (2·4) and 85 (2·6) %, respectively. The pepsin concentration with higher Pearson correlation coefficients with the in vivo results were 0·0002 % for MBM (r 0·380; P = 0·008) and 0·02 % for PM (r 0·482; P = 0·005). The relationship between the in vivo and in vitro results was better explained by the following equations: CP digestibility of MBM = 61·7 + 0·2644 × PSP at 0·0002 % (P = 0·008; R (2) 0·126); and CP digestibility of PM = 54·1 + 0·3833 × PSP at 0·02 % (P = 0·005; R (2) 0·216). Although significant, the coefficients of determination were low, indicating that the models were weak and need to be used with caution.
Resumo:
Thesis (doctoral)--Grossherzogl. Hessische Landes- Universitat Giessen, 1905.
Resumo:
Scaffolds manufactured from biological materials promise better clinical functionality, providing that characteristic features are preserved. Collagen, a prominent biopolymer, is used extensively for tissue engineering applications, because its signature biological and physico-chemical properties are retained in vitro preparations. We show here for the first time that the very properties that have established collagen as the leading natural biomaterial are lost when it is electro-spun into nano-fibres out of fluoroalcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol or 2,2,2-trifluoroethanol. We further identify the use of fluoroalcohols as the major culprit in the process. The resultant nano-scaffolds lack the unique ultra-structural axial periodicity that confirms quarter-staggered supramolecular assemblies and the capacity to generate second harmonic signals, representing the typical crystalline triple-helical structure. They were also characterised by low denaturation temperatures, similar to those obtained from gelatin preparations ( p > 0.05). Likewise, circular dichroism spectra revealed extensive denaturation of the electro-spun collagen. Using pepsin digestion in combination with quantitative SDS-PAGE, we corroborate great losses of up to 99% of triple-helical collagen. In conclusion, electro-spinning of collagen out of fluoroalcohols effectively denatures this biopolymer, and thus appears to defeat its purpose, namely to create biomimetic scaffolds emulating the collagen structure and function of the extracellular matrix.
Resumo:
In a study that included C-4 tropical grasses, C-3 temperate grasses and C-3 pasture legumes, in vitro dry matter digestibility of extrusa, measured as in vitro dry matter loss (IVDML) during incubation, compared with that of the forage consumed, was greater for grass extrusa but not for legume extrusa. The increase in digestibility was not caused by mastication or by the freezing of extrusa samples during storage but by the action of saliva. Comparable increases in IVDML were achieved merely by mixing bovine saliva with ground forage samples. Differences were greater than could be explained by increases due to completely digestible salivary DM. There was no significant difference between animals in relation to the saliva effect on IVDML and, except for some minor differences, similar saliva effects on IVDML were measured using either the pepsin-cellulase or rumen fluid-pepsin in vitro techniques. For both C-4 and C-3 grasses the magnitude of the differences were inversely related to IVDML of the feed and there was little or no difference between extrusa and feed at high digestibilities (>70%) whereas differences of more than 10 percentage units were measured on low quality grass forages. The data did not suggest that the extrusa or saliva effect on digestibility was different for C-3 grasses than for C-4 grasses but data on C-3 grasses were limited to few species and to high digestibility samples. For legume forages there was no saliva effect when the pepsin-cellulase method was used but there was a small but significant positive effect using the rumen fluid-pepsin method. It was concluded that when samples of extrusa are analysed using in vitro techniques, predicted in vivo digestibility of the feed consumed will often be overestimated, especially for low quality grass diets. The implications of overestimating in vivo digestibility and suggestions for overcoming such errors are discussed.
Resumo:
Protein modification via enzymatic cross-linking is an attractive way for altering food structure so as to create products with increased quality and nutritional value. These modifications are expected to affect not only the structure and physico-chemical properties of proteins but also their physiological characteristics, such as digestibility in the GI-tract and allergenicity. Protein cross-linking enzymes such as transglutaminases are currently commercially available, but also other types of cross-linking enzymes are being explored intensively. In this study, enzymatic cross-linking of β-casein, the most abundant bovine milk protein, was studied. Enzymatic cross-linking reactions were performed by fungal Trichoderma reesei tyrosinase (TrTyr) and the performance of the enzyme was compared to that of transglutaminase from Streptoverticillium mobaraense (Tgase). Enzymatic cross-linking reactions were followed by different analytical techniques, such as size exclusion chromatography -Ultra violet/Visible multi angle light scattering (SEC-UV/Vis-MALLS), phosphorus nuclear magnetic resonance spectroscopy (31P-NMR), atomic force (AFM) and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). The research results showed that in both cases cross-linking of β-casein resulted in the formation of high molecular mass (MM ca. 1 350 kg mol-1), disk-shaped nanoparticles when the highest enzyme dosage and longest incubation times were used. According to SEC-UV/Vis-MALLS data, commercial β-casein was cross-linked almost completely when TrTyr and Tgase were used as cross-linking enzymes. In the case of TrTyr, high degree of cross-linking was confirmed by 31P-NMR where it was shown that 91 % of the tyrosine side-chains were involved in the cross-linking. The impact of enzymatic cross-linking of β-casein on in vitro digestibility by pepsin was followed by various analytical techniques. The research results demonstrated that enzymatically cross-linked β-casein was stable under the acidic conditions present in the stomach. Furthermore, it was found that cross-linked β-casein was more resistant to pepsin digestion when compared to that of non modified β-casein. The effects of enzymatic cross-linking of β-casein on allergenicity were also studied by different biochemical test methods. On the basis of the research results, enzymatic cross-linking decreased allergenicity of native β-casein by 14 % when cross-linked by TrTyr and by 6 % after treatment by Tgase. It can be concluded that in addition to the basic understanding of the reaction mechanism of TrTyr on protein matrix, the research results obtained in this study can have high impact on various applications like food, cosmetic, medical, textile and packing sectors.
Resumo:
The susceptibility of a monodeamidated RNAaseA (RNAaseAa1) towards carboxypeptidaseA , alpha-chymotrypsin and pepsin has been studied. Similar to RNAaseA, the C-terminal of RNAaseAa1 is not available for carboxypeptidaseA hydrolysis. The thermal stability of RNAaseAa1 as probed through chymotryptic digestion is found to be less than that of RNAaseA. Preliminary chromatographic analysis of the digested material, however, suggests that the nature of thermal transition might be the same in the two proteins. Pepsin inactivates RNAaseAa1 more slowly than does RNAaseA. Accordingly, less peptide bonds, almost half that of RNAaseA, are cleaved by pepsin in RNAaseAa1. The accumulation of RNAase-P type intermediates is not evident during peptic digestion of RNAaseAa1. Reaction with O-benzoquinone at low pH shows that methionines of the deamidated protein seem to have higher reactivities. These observations indicate a different structure for RNAaseAa1 at elevated temperature and low pH.
Resumo:
Suspensions of testicular germ cells from six species of mammals were prepared and stained for the DNA content with a fluorochrome (ethidium bromide) adopting a common technique and subjected to DNA flow cytometry. While uniform staining of the germ cells of the mouse, hamster, rat and monkey could be obtained by treating with 0.5% pepsin for 60 min followed by staining with ethidium bromide for 30 min, that of the guinea pig and rabbit required for optimal staining pepsinization for 90 min and treatment with ethidium bromide for 60 min. The procedure adopted here provided a uniform recovery of over 80% of germ cells with each one of the species tested and the cell population distributed itself according to the DNA content (expressed as C values) into 5 major classes-spermatogonia (2C), cells in S-phase, primary spermatocytes (4C), round spermatids (1C), and elongating/elongated spermatids (HC). Comparison of the DNA distribution pattern of the germ cell populations between species revealed little variation in the relative quantities of cells with 2C (8-11%), S-phase (6-9%), and 4C (6-9%) amount of DNA. Though the spermatid cell populations exhibited variations (1C:31-46%, HCI:7-20% and and HC2:11-25%) they represented the bulk of germ cells (70-80%). The overall conversion of 2C to 1C (1C:2C ratio) and meiotic transformation of 4C cells to IC (1C:4C ratio) kinetics were relatively constant between the species studied. The present study clearly demonstrates that DNA flow cytometry can be adopted with ease and assurance to quantify germ cell transformation and as such spermatogenesis by analysing a large number of samples with consistency both within and across the species barrier. Any variation from the norms in germ cell proportions observed following treatment, for e.g. hormonal stimulation or deprivation can then be ascribed due to a specific effect of the hormone/drug on single/multiple steps in germ cell transformation
Resumo:
The encapsulation of probiotic Lactobacillus acidophilus through layer-by-layer self-assembly of polyelectrolytes (PE) chitosan (CHI) and carboxymethyl cellulose (CMC) has been investigated,to enhance its survival m adverse conditions encountered in the GI tract The survival of encapsulated cells in simulated gastric (SGF) and intestinal fluids (SIF) is significant when compared to nonencapsulated cells On sequential exposure to SGF and SIF fox 120 nun, almost complete death of free cells is observed However, for cells coated with three nanolayers of PEs (CHI/CMC/CHI) about 33 log % of the cells (6 log cfu/500 mg) survived under the same conditions The enhanced survival rate of encapsulated L acidophilus can be attributed to the impermeability of polyelectrolyte nanolayers to large enzyme molecules like pepsin, and pancreatin that cause proteolysis and to the stability of the polyelectrolyte nanolayers in gastric and intestinal pH The PE coating also serves to reduce viability losses during freezing and freeze- drying About 73 and 92 log % of uncoated and coated cells survived after freeze:drying, and the losses occurring between freezing and freeze-drying were found to be lower for coated cells