938 resultados para PDE-based parallel preconditioner
Resumo:
Animportant step in the residue number system(RNS) based signal processing is the conversion of signal into residue domain. Many implementations of this conversion have been proposed for various goals, and one of the implementations is by a direct conversion from an analogue input. A novel approach for analogue-to-residue conversion is proposed in this research using the most popular Sigma–Delta analogue-to-digital converter (SD-ADC). In this approach, the front end is the same as in traditional SD-ADC that uses Sigma–Delta (SD) modulator with appropriate dynamic range, but the filtering is doneby a filter implemented usingRNSarithmetic. Hence, the natural output of the filter is an RNS representation of the input signal. The resolution, conversion speed, hardware complexity and cost of implementation of the proposed SD based analogue-to-residue converter are compared with the existing analogue-to-residue converters based on Nyquist rate ADCs
Resumo:
PURPOSE The aim of this work is to derive a theoretical framework for quantitative noise and temporal fidelity analysis of time-resolved k-space-based parallel imaging methods. THEORY An analytical formalism of noise distribution is derived extending the existing g-factor formulation for nontime-resolved generalized autocalibrating partially parallel acquisition (GRAPPA) to time-resolved k-space-based methods. The noise analysis considers temporal noise correlations and is further accompanied by a temporal filtering analysis. METHODS All methods are derived and presented for k-t-GRAPPA and PEAK-GRAPPA. A sliding window reconstruction and nontime-resolved GRAPPA are taken as a reference. Statistical validation is based on series of pseudoreplica images. The analysis is demonstrated on a short-axis cardiac CINE dataset. RESULTS The superior signal-to-noise performance of time-resolved over nontime-resolved parallel imaging methods at the expense of temporal frequency filtering is analytically confirmed. Further, different temporal frequency filter characteristics of k-t-GRAPPA, PEAK-GRAPPA, and sliding window are revealed. CONCLUSION The proposed analysis of noise behavior and temporal fidelity establishes a theoretical basis for a quantitative evaluation of time-resolved reconstruction methods. Therefore, the presented theory allows for comparison between time-resolved parallel imaging methods and also nontime-resolved methods. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface to find new hotspots, where ligands might potentially interact with, and which is implemented in massively parallel Graphics Processing Units, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to solve this problem, we propose a novel approach where neural networks are trained with databases of known active (drugs) and inactive compounds, and later used to improve VS predictions.
Resumo:
Bragg diffraction peak profiles and intensities in asymmetric (Omega-2theta) diffraction using a mirror-based parallel-beam geometry were compared with symmetric parallel-beam (theta-2theta) and conventional Bragg - Brentano (theta-2theta) diffraction for a powdered quartz sample and the NIST standard reference material (SRM) 660a (LaB6, lanthanum hexaboride). A comparison of the intensities and line widths (full width at half-maximum, FWHM) of these techniques demonstrated that low incident angles (Omega < 5&DEG;) are preferable for the parallel-beam setup. For higher &UOmega; values, if 2θ < 2Omega, mass absorption reduces the intensities significantly compared with the Bragg - Brentano setup. The diffraction peak shapes for the mirror geometry are more asymmetric and have larger FWHM values than corresponding peaks recorded with a Bragg - Brentano geometry. An asymmetric mirror-based parallel-beam geometry offers some advantages in respect of intensity when compared with symmetric geometries, and hence may be well suited to quantitative studies, such as those involving Rietveld analysis. A trial Rietveld refinement of a 50% quartz - 50% corundum mixture was performed and produced adequate results.
Resumo:
In computer graphics, global illumination algorithms take into account not only the light that comes directly from the sources, but also the light interreflections. This kind of algorithms produce very realistic images, but at a high computational cost, especially when dealing with complex environments. Parallel computation has been successfully applied to such algorithms in order to make it possible to compute highly-realistic images in a reasonable time. We introduce here a speculation-based parallel solution for a global illumination algorithm in the context of radiosity, in which we have taken advantage of the hierarchical nature of such an algorithm
Resumo:
The computer is a useful tool in the teaching of upper secondary school physics, and should not have a subordinate role in students' learning process. However, computers and computer-based tools are often not available when they could serve their purpose best in the ongoing teaching. Another problem is the fact that commercially available tools are not usable in the way the teacher wants. The aim of this thesis was to try out a novel teaching scenario in a complicated subject in physics, electrodynamics. The didactic engineering of the thesis consisted of developing a computer-based simulation and training material, implementing the tool in physics teaching and investigating its effectiveness in the learning process. The design-based research method, didactic engineering (Artigue, 1994), which is based on the theoryof didactical situations (Brousseau, 1997), was used as a frame of reference for the design of this type of teaching product. In designing the simulation tool a general spreadsheet program was used. The design was based on parallel, dynamic representations of the physics behind the function of an AC series circuit in both graphical and numerical form. The tool, which was furnished with possibilities to control the representations in an interactive way, was hypothesized to activate the students and promote the effectiveness of their learning. An effect variable was constructed in order to measure the students' and teachers' conceptions of learning effectiveness. The empirical study was twofold. Twelve physics students, who attended a course in electrodynamics in an upper secondary school, participated in a class experiment with the computer-based tool implemented in three modes of didactical situations: practice, concept introduction and assessment. The main goal of the didactical situations was to have students solve problems and study the function of AC series circuits, taking responsibility for theirown learning process. In the teacher study eighteen Swedish speaking physics teachers evaluated the didactic potential of the computer-based tool and the accompanying paper-based material without using them in their physics teaching. Quantitative and qualitative data were collected using questionnaires, observations and interviews. The result of the studies showed that both the group of students and the teachers had generally positive conceptions of learning effectiveness. The students' conceptions were more positive in the practice situation than in the concept introduction situation, a setting that was more explorative. However, it turned out that the students' conceptions were also positive in the more complex assessment situation. This had not been hypothesized. A deeper analysis of data from observations and interviews showed that one of the students in each pair was more active than the other, taking more initiative and more responsibilityfor the student-student and student-computer interaction. These active studentshad strong, positive conceptions of learning effectiveness in each of the threedidactical situations. The group of less active students had a weak but positive conception in the first iv two situations, but a negative conception in the assessment situation, thus corroborating the hypothesis ad hoc. The teacher study revealed that computers were seldom used in physics teaching and that computer programs were in short supply. The use of a computer was considered time-consuming. As long as physics teaching with computer-based tools has to take place in special computer rooms, the use of such tools will remain limited. The affordance is enhanced when the physical dimensions as well as the performance of the computer are optimised. As a consequence, the computer then becomes a real learning tool for each pair of students, smoothly integrated into the ongoing teaching in the same space where teaching normally takes place. With more interactive support from the teacher, the computer-based parallel, dynamic representations will be efficient in promoting the learning process of the students with focus on qualitative reasoning - an often neglected part of the learning process of the students in upper secondary school physics.
Resumo:
In computer graphics, global illumination algorithms take into account not only the light that comes directly from the sources, but also the light interreflections. This kind of algorithms produce very realistic images, but at a high computational cost, especially when dealing with complex environments. Parallel computation has been successfully applied to such algorithms in order to make it possible to compute highly-realistic images in a reasonable time. We introduce here a speculation-based parallel solution for a global illumination algorithm in the context of radiosity, in which we have taken advantage of the hierarchical nature of such an algorithm
Resumo:
With the emerging prevalence of smart phones and 4G LTE networks, the demand for faster-better-cheaper mobile services anytime and anywhere is ever growing. The Dynamic Network Optimization (DNO) concept emerged as a solution that optimally and continuously tunes the network settings, in response to varying network conditions and subscriber needs. Yet, the DNO realization is still at infancy, largely hindered by the bottleneck of the lengthy optimization runtime. This paper presents the design and prototype of a novel cloud based parallel solution that further enhances the scalability of our prior work on various parallel solutions that accelerate network optimization algorithms. The solution aims to satisfy the high performance required by DNO, preliminarily on a sub-hourly basis. The paper subsequently visualizes a design and a full cycle of a DNO system. A set of potential solutions to large network and real-time DNO are also proposed. Overall, this work creates a breakthrough towards the realization of DNO.
Resumo:
In this paper we describe and evaluate a geometric mass-preserving redistancing procedure for the level set function on general structured grids. The proposed algorithm is adapted from a recent finite element-based method and preserves the mass by means of a localized mass correction. A salient feature of the scheme is the absence of adjustable parameters. The algorithm is tested in two and three spatial dimensions and compared with the widely used partial differential equation (PDE)-based redistancing method using structured Cartesian grids. Through the use of quantitative error measures of interest in level set methods, we show that the overall performance of the proposed geometric procedure is better than PDE-based reinitialization schemes, since it is more robust with comparable accuracy. We also show that the algorithm is well-suited for the highly stretched curvilinear grids used in CFD simulations. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A contribution is presented, intended to provide theoretical foundations for the ongoing efforts to employ global instability theory for the analysis of the classic boundary-layer flow, and address the associated issue of appropriate inflow/outflow boundary conditions to close the PDE-based global eigenvalue problem in open flows. Starting from a theoretically clean and numerically simple application, in which results are also known analytically and thus serve as a guidance for the assessment of the performance of the numerical methods employed herein, a sequence of issues is systematically built into the target application, until we arrive at one representative of open systems whose instability is presently addressed by global linear theory applied to open flows, the latter application being neither tractable theoretically nor straightforward to solve by numerical means. Experience gained along the way is documented. It regards quantification of the depar- ture of the numerical solution from the analytical one in the simple problem, the generation of numerical boundary layers at artificially truncated boundaries, no matter how far the latter are placed from the region of highest flow gradients and, ultimately the impracti- cally large number of (direct and adjoint) modes necessary to project an arbitrary initial perturbation and follow its temporal evolution by a global analysis approach, a finding which may question the purported robustness reported in the literature of the recovery of optimal perturbations as part of global analyses yielding under-resolved eigenspectra.
Resumo:
Instability analysis of compressible orthogonal swept leading-edge boundary layer flow was performed in the context of BiGlobal linear theory. 1, 2 An algorithm was developed exploiting the sparsity characteristics of the matrix discretizing the PDE-based eigenvalue problem. This allowed use of the MUMPS sparse linear algebra package 3 to obtain a direct solution of the linear systems associated with the Arnoldi iteration. The developed algorithm was then applied to efficiently analyze the effect of compressibility on the stability of the swept leading-edge boundary layer and obtain neutral curves of this flow as a function of the Mach number in the range 0 ≤ Ma ≤ 1. The present numerical results fully confirmed the asymptotic theory results of Theofilis et al. 4 Up to the maximum Mach number value studied, it was found that an increase of this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.
Resumo:
The aim of this thesis is to study the mechanisms of instability that occur in swept wings when the angle of attack increases. For this, a simplified model for the a simplified model for the non-orthogonal swept leading edge boundary layer has been used as well as different numerical techniques in order to solve the linear stability problem that describes the behavior of perturbations superposed upon this base flow. Two different approaches, matrix-free and matrix forming methods, have been validated using direct numerical simulations with spectral resolution. In this way, flow instability in the non-orthogonal swept attachment-line boundary layer is addressed in a linear analysis framework via the solution of the pertinent global (Bi-Global) PDE-based eigenvalue problem. Subsequently, a simple extension of the extended G¨ortler-H¨ammerlin ODEbased polynomial model proposed by Theofilis, Fedorov, Obrist & Dallmann (2003) for orthogonal flow, which includes previous models as particular cases and recovers global instability analysis results, is presented for non-orthogonal flow. Direct numerical simulations have been used to verify the stability results and unravel the limits of validity of the basic flow model analyzed. The effect of the angle of attack, AoA, on the critical conditions of the non-orthogonal problem has been documented; an increase of the angle of attack, from AoA = 0 (orthogonal flow) up to values close to _/2 which make the assumptions under which the basic flow is derived questionable, is found to systematically destabilize the flow. The critical conditions of non-orthogonal flows at 0 _ AoA _ _/2 are shown to be recoverable from those of orthogonal flow, via a simple analytical transformation involving AoA. These results can help to understand the mechanisms of destabilization that occurs in the attachment line of wings at finite angles of attack. Studies taking into account variations of the pressure field in the basic flow or the extension to compressible flows are issues that remain open. El objetivo de esta tesis es estudiar los mecanismos de la inestabilidad que se producen en ciertos dispositivos aerodinámicos cuando se aumenta el ángulo de ataque. Para ello se ha utilizado un modelo simplificado del flujo de base, así como diferentes técnicas numéricas, con el fin de resolver el problema de estabilidad lineal asociado que describe el comportamiento de las perturbaciones. Estos métodos; sin y con formación de matriz, se han validado utilizando simulaciones numéricas directas con resolución espectral. De esta manera, la inestabilidad del flujo de capa límite laminar oblicuo entorno a la línea de estancamiento se aborda en un marco de análisis lineal por medio del método Bi-Global de resolución del problema de valores propios en derivadas parciales. Posteriormente se propone una extensión simple para el flujo no-ortogonal del modelo polinomial de ecuaciones diferenciales ordinarias, G¨ortler-H¨ammerlin extendido, propuesto por Theofilis et al. (2003) para el flujo ortogonal, que incluye los modelos previos como casos particulares y recupera los resultados del analisis global de estabilidad lineal. Se han realizado simulaciones directas con el fin de verificar los resultados del análisis de estabilidad así como para investigar los límites de validez del modelo de flujo base utilizado. En este trabajo se ha documentado el efecto del ángulo de ataque AoA en las condiciones críticas del problema no ortogonal obteniendo que el incremento del ángulo de ataque, de AoA = 0 (flujo ortogonal) hasta valores próximos a _/2, en el cual las hipótesis sobre las que se basa el flujo base dejan de ser válidas, tiende sistemáticamente a desestabilizar el flujo. Las condiciones críticas del caso no ortogonal 0 _ AoA _ _/2 pueden recuperarse a partir del caso ortogonal mediante el uso de una transformación analítica simple que implica el ángulo de ataque AoA. Estos resultados pueden ayudar a comprender los mecanismos de desestabilización que se producen en el borde de ataque de las alas de los aviones a ángulos de ataque finitos. Como tareas pendientes quedaría realizar estudios que tengan en cuenta variaciones del campo de presión en el flujo base así como la extensión de éste al caso de flujos compresibles.