997 resultados para PCR diagnosis
Resumo:
Sample preparation and DNA extraction protocols for DNA amplification by PCR, which can be applied in human fecal samples for taeniasis diagnosis, are described. DNA extracted from fecal specimens with phenol/chloroform/isoamilic alcohol and DNAzol® reagent had to be first purified to generate fragments of 170 pb and 600 pb by HDP2-PCR. This purification step was not necessary with the use of QIAmp DNA stool mini kit®. Best DNA extraction results were achieved after eggs disruption with glass beads, either with phenol/chloroform/isoamilic alcohol, DNAzol® reagent or QIAmp DNA stool mini kit®.
Resumo:
As acute nonlymphocytic leukemia (ANLL) with inv(16) (p13q22) or t(16;16)(p13;q22) has been shown to result from the fusion of transcription factor subunit core binding factor (CBFB) to a myosin heavy chain (MYH11), we sought to design methods to detect this rearrangement using reverse transcriptase-polymerase chain reaction (RT-PCR). In all of 27 inv(16)(p13q22) and four t(16;16)(p13;q22) cases tested, a chimeric CBFB-MYH11 transcript coding for an in-frame fusion protein was detected. In a more extensive RT-PCR analysis with different primer pairs, we detected a second new chimeric CBFB-MYH11 transcript in 10 of 11 patients tested. The CBFB-MYH11 reading frame of the second transcript was maintained in one patient but not in the others. We show that the different CBFB-MYH11 transcripts in one patient arise from alternative splicing. Translation of the transcript in which the CBFB-MYH11 reading frame is not maintained leads to a slightly truncated CBFB protein.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the gold standard, and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture.
Resumo:
Supernatant of boiled spleen saline-suspensions of Yersinia pestis experimentally infected animals were used as template for PCR amplification without DNA extraction. PCR sensitivity was enhanced by a second round of amplification (Nested). No amplification was observed from non-infected animals.
Resumo:
We have developed a procedure for the rapid diagnosis of plague that also allows the identification of prominent virulence markers of Y. pestis strains. This procedure is based upon the use of a single polymerase chain reaction with multiple pairs of primers directed at genes present in the three virulence plasmids as well as in the chromosomal pathogenicity island of the bacterium. The technique allowed the discrimination of strains which lacked one or more of the known pathogenic loci, using as template total DNA obtained from bacterial cultures and from simulated blood cultures containing diluted concentration of bacteria. It also proved effective in confirming the disease in a blood culture from a plague suspected patient. As the results are obtained in a few hours this technique will be useful in the methodology of the Plague Control Program.
Resumo:
Abdominal angiostrongyliasis is a zoonotic infection caused by an intra-vascular nematode parasitic of wild rodents, Angiostrongylus costaricensis. No parasitological diagnosis is currently available and immunodiagnosis presents several drawbacks. Primers constructed based on a congeneric species, A. cantonensis, were able to amplify a 232 bp fragment from serum samples of 3 patients with histopathological diagnosis. Extraction was better performed with DNAzol and the specificity of the primers was confirmed by Southern blot. This disease has been diagnosed with frequency in south of Brazil, thus, this method appears like the important and unpublished alternative to improve diagnostic of disease.
Resumo:
The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR) based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR) was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Suspicion of Brazilian spotted fever (BSF) should occur in endemic regions upon surveillance of the acute febrile icteric hemorrhagic syndrome (AFIHS). However, limitations associated with currently available laboratory tests pose a challenge to early diagnosis, especially in fatal cases. Two real-time PCR (qPCR) protocols were evaluated to diagnose BSF in 110 fatal AFIHS cases, collected in BSF-endemic regions in 2009-2010. Of these, 24 were positive and 86 negative by indirect immunofluorescence (IFA) assay (cutoff IgG and/or IgM >= 128). DNA from these samples was used in the qPCR protocols: one to detect Rickettsia spp. (Citrate synthase gene) and another to determine spotted fever group (SFG) Rickettsia species (OmpA gene). Of the 24 IFA-positive samples, 5 (21%) were positive for OmpA and 9 (38%) for citrate synthase. In the IFA-negative group (n = 86), OmpA and citrate synthase were positive in 23 (27%) and 27 (31%), respectively. These results showed that the 2 qPCR protocols were about twice as sensitive as the IFA test alone (93% concordance). In conclusion, qPCR is a sensitive method for the diagnosis of fatal BSF cases and should be considered for routine surveillance of AFIHS in places like Brazil, where spotted fever-related lethality is high and other endemic diseases like dengue and leptospirosis can mislead diagnosis. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Bovine coronavirus (BCoV) is a member of the group 2 of the Coronavirus (Nidovirales: Coronaviridae) and the causative agent of enteritis in both calves and adult bovine, as well as respiratory disease in calves. The present study aimed to develop a semi-nested RT-PCR for the detection of BCoV based on representative up-to-date sequences of the nucleocapsid gene, a conserved region of coronavirus genome. Three primers were designed, the first round with a 463bp and the second (semi-nested) with a 306bp predicted fragment. The analytical sensitivity was determined by 10-fold serial dilutions of the BCoV Kakegawa strain (HA titre: 256) in DEPC treated ultra-pure water, in fetal bovine serum (FBS) and in a BCoV-free fecal suspension, when positive results were found up to the 10-2, 10-3 and 10-7 dilutions, respectively, which suggests that the total amount of RNA in the sample influence the precipitation of pellets by the method of extraction used. When fecal samples was used, a large quantity of total RNA serves as carrier of BCoV RNA, demonstrating a high analytical sensitivity and lack of possible substances inhibiting the PCR. The final semi-nested RT-PCR protocol was applied to 25 fecal samples from adult cows, previously tested by a nested RT-PCR RdRp used as a reference test, resulting in 20 and 17 positives for the first and second tests, respectively, and a substantial agreement was found by kappa statistics (0.694). The high sensitivity and specificity of the new proposed method and the fact that primers were designed based on current BCoV sequences give basis to a more accurate diagnosis of BCoV-caused diseases, as well as to further insights on protocols for the detection of other Coronavirus representatives of both Animal and Public Health importance.
Resumo:
Neonatal calf diarrhea is a multi-etiology syndrome of cattle and direct detection of the two major agents of the syndrome, group A rotavirus and Bovine coronavirus (BCoV) is hampered by their fastidious growth in cell culture. This study aimed at developing a multiplex semi-nested RT-PCR for simultaneous detection of BCoV (N gene) and group A rotavirus (VP1 gene) with the addition of an internal control (mRNA ND5). The assay was tested in 75 bovine feces samples tested previously for rotavirus using PAGE and for BCoV using nested RT-PCR targeted to RdRp gene. Agreement with reference tests was optimal for BCoV (kappa = 0.833) and substantial for rotavirus detection (kappa = 0.648). the internal control, ND5 mRNA, was detected successfully in all reactions. Results demonstrated that this multiplex semi-nested RT-PCR was effective in the detection of BCoV and rotavirus, with high sensitivity and specificity for simultaneous detection of both viruses at a lower cost, providing an important tool for studies on the etiology of diarrhea in cattle. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Using the Roche LightCycler we developed a real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay using the Influenza A LightCycler RT-PCR (FA-LC-RTPCR) for the rapid detection of Influenza A. The assay was used to examine 178 nasopharyngeal aspirate (NPA) samples, from patients with clinically recognised respiratory tract infection, for the presence of Influenza A RNA. The results were then compared to a testing algorithm combining direct immunofluorescent assy (DFA) and a culture augmented DFA (CA-DFA) assay. In total, 76 (43%) specimens were positive and 98 (55%) specimens were negative by both the FA-LC-RTPCR and the DFA and CA-DFA algorithm. In addition, the FA-LC-RTPCR detected a further 4 (2%) positive specimens, which were confirmed by a conventional RT-PCR method. The high level of sensitivity and specificity, combined with the rapid turnaround time for results, makes the LC-RT-PCR assay suitable for the detection of Influenza A in clinical specimens.