967 resultados para PCM wall
Resumo:
This paper presents the results of a numerical and experimental study of phase change material (PCM) filled walls and roofs under real operational conditions to achieve passive thermal comfort. The numerical part of the study was based on a one-dimensional model for the phase change problem controlled by pure conduction. Real radiation data was used to determine the external face temperature. The numerical treatment was based upon using finite difference approximations and the ADI scheme. The results obtained were compared with field measurements. The experimental set-up consisted of a small room with movable roof and side wall. The roof was constructed in the traditional way but with the phase change material enclosed. Thermocouples were distributed across the cross section of the roof. Another roof, identical but without the PCM, was also used during comparative tests. The movable wall was also constructed as is done traditionally but with the PCM enclosed. Again, thermocouples were distributed across the wall thickness to enable measurement of the local temperatures. Another wall, identical but without the PCM, was also used during comparative tests. The PCM used in the numerical and experimental tests was composed of a mixture of two commercial grades of glycol in order to obtain the required fusion temperature range. Comparison between the simulation results and the experiments indicated good agreement. Field tests also indicated that the PCM used was adequate and that the concept was effective in maintaining the indoor temperature very close to the established comfort limits. Further economical analysis indicated that the concept could effectively help in reducing the electric energy consumption and improving the energy demand pattern. © 1997 by John Wiley & Sons, Ltd.
Resumo:
The high thermal storage capacity of phase change material (PCM) can reduce energy consumption in buildings through energy storage and release when combined with renewable energy sources, night cooling, etc. PCM boards can be used to absorb heat gains during daytime and release heat at night. In this paper, the thermal performance of an environmental chamber fitted with phase change material boards has been investigated. During a full-cycle experiment, i.e. charging–releasing cycle, the PCM boards on a wall can reduce the interior wall surface temperature during the charging process, whereas the PCM wall surface temperature is higher than that of the other walls during the heat releasing process. It is found that the heat flux density of the PCM wall in the melting zone is almost twice as large as that of ordinary wall. Also, the heat-insulation performance of a PCM wall is better than that of an ordinary wall during the charging process, while during the heat discharging process, the PCM wall releases more heat energy. The convective heat transfer coefficient of PCM wall surface calculated using equations for a normal wall material produces an underestimation of this coefficient. The high convective heat transfer coefficient for a PCM wall is due to the increased energy exchange between the wall and indoor air.
Resumo:
Raman spectroscopic analyses of fragmented wall-painting specimens from a Romano-British villa dating from ca. 200 AD are reported. The predominant pigment is red haematite, to which carbon, chalk and sand have been added to produce colour variations, applied to a typical Roman limewash putty composition. Other pigment colours are identified as white chalk, yellow (goethite), grey (soot/chalk mixture) and violet. The latter pigment is ascribed to caput mortuum, a rare form of haematite, to which kaolinite (possibly from Cornwall) has been added, presumably in an effort to increase the adhesive properties of the pigment to the substratum. This is the first time that kaolinite has been reported in this context and could indicate the successful application of an ancient technology discovered by the Romano-British artists. Supporting evidence for the Raman data is provided by X-ray diffraction and SEM-EDAX analyses of the purple pigment.
Resumo:
The primary aims of scoliosis surgery are to halt the progression of the deformity, and to reduce its severity (cosmesis). Currently, deformity correction is measured in terms of posterior parameters (Cobb angles and rib hump), even though the cosmetic concern for most patients is anterior chest wall deformity. In this study, we propose a new measure for assessing anterior chest wall deformity and examine the correlation between rib hump and the new measure. 22 sets of CT scans were retrieved from the QUT/Mater Paediatric Spinal Research Database. The Image J software (NIH) was used to manipulate formatted CT scans into 3-dimensional anterior chest wall reconstructions. A ‘chest wall angle’ was then measured in relation to the first sacral vertebral body. The chest wall angle was found to be a reliable tool in the analysis of chest wall deformity. No correlation was found between the new measure and rib hump angle. Since rib hump has been shown to correlate with vertebral rotation on CT, this suggests that there maybe no correlation between anterior and posterior deformity measures. While most surgical procedures will adequately address the coronal imbalance & posterior rib hump elements of scoliosis, they do not reliably alter the anterior chest wall shape. This implies that anterior chest wall deformity is to a large degree an intrinsic deformity, not directly related to vertebral rotation.
Resumo:
Scanning Tunneling Spectroscopy was performed on a (15,0) single wall carbon nanotube partially wrapped by Poly(3-hexyl-thiophene). On the bare nanotube section, the local density of states is in good agreement with the theoretical model based on local density approximation and remarkably is not perturbed by the polymer wrapping. On the coiled section, a rectifying current-voltage characteristic has been observed along with the charge transfer from the polymer to the nanotube. The electron transfer from Poly(3-hexyl-thiophene) to metallic nanotube was previously theoretically proposed and contributes to the presence of the Schottky barrier at the interface responsible for the rectifying behavior.
Resumo:
As Brisbane grows, it is rapidly becoming akin to any other city in the world with its typical stark grey concrete buildings rather than being characterized by its subtropical element of abundant green vegetation. Living Walls can play a vital role in restoring the loss of this distinct local element of a subtropical city. This paper will start by giving an overview of the traditional methods of greening subtropical cities with the use of urban parks and street trees. Then, by examining a recent heat imaging map of Brisbane, the effect of green cover with the built environment will be shown. With this information from a macro level, this paper will proceed to examine a typical urban block within the Central Business District (CBD) to demonstrate urban densification in relation to greenery in the city. Then, this paper will introduce the new technology where Living Walls have the untapped potential of effectively greening a city where land is scarce and given over to high density development. Living Walls incorporated into building design does not only enhance the subtropical lifestyle that is being lost in modern cities but is also an effective means for addressing climate change. This paper will serve as a preliminary investigation into the effects of incorporating Living Walls into cities. By growing a Living Wall onto buildings, we can be part of an effective design solution for countering global warming and at the same time, Living Walls can return local character to subtropical cities, thereby greening the city as well.
Resumo:
The story of the fall of the Berlin Wall was an aspect of the “imagination gap” that we had to wrestle with as journalists covering the collapse of the Eastern Bloc in Europe. It was scarcely possible to believe what you found yourself reporting, and that work became a two-track process. On one hand a mass social movement was dictating the pace and direction of events; on the other, the institutional business of politics as usual, to provide a framework for all the change that was happening, had to be managed – and reported on. In later analyseds we could see, that crisis in the Soviet Union led to the crisis over the Berlin Wall; and from the fall of the Wall, came Germany’s reunification, and with that also, formation of the European Union as it is today. The government of the Federal Republic of Germany convinced its neighbours that a reunited Germany, within an expanded EU, would be a very acceptable “European Germany” -- not the leader of a “German Europe”. It committed itself financially, supporting the new Euro currency. The former communist states of Eastern Europe demanded to join and expand the EU; in order to remove themselves from the Soviet Union, enjoy human rights, and share in Western prosperity. So today, following on from the events of 1989, the European Union is an amalgam of 27 member countries, with close to 500 million citizens and accounting for 30 % of world Gross National Product.
Resumo:
This paper turns Snow-White's magic mirror onto recent economics Nobel Prize winners, top economists and happiness researchers, and through the eyes of the 'man in the street' seeks to determine who the happiest academic is. The study not only provides a clear answer to this question but also unveils who is the ladies' man and who is the sweetheart of the aged. It also explores the extent to which information matters and whether individuals' self-reported happiness affects their perceptions about the happiness of these superstars in economics.
Resumo:
Fire design is an essential element of the overall design procedure of structural steel members and systems. Conventionally the fire rating of load-bearing stud wall systems made of light gauge steel frames (LSF) is based on approximate prescriptive methods developed on the basis of limited fire tests. This design is limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to the stud walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these light gauge steel stud wall systems. Hence a detailed fire research study into the performance and effectiveness of a recently developed innovative composite panel wall system was undertaken at Queensland University of Technology using both full scale fire tests and numerical studies. Experimental results of LSF walls using the new composite panels under axial compression load have shown the improvement in fire performance and fire resistance rating. Numerical analyses are currently being undertaken using the finite element program ABAQUS. Measured temperature profiles of the studs are used in the numerical models and the results are used to calibrate against full scale test results. The validated model will be used in a detailed parametric study with an aim to develop suitable design rules within the current cold-formed steel structures and fire design standards. This paper will present the results of experimental and numerical investigations into the structural and fire behaviour of light gauge steel stud walls protected by the new composite panel. It will demonstrate the improvements provided by the new composite panel system in comparison to traditional wall systems.