28 resultados para Oxysterols


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Niemann-Pick type C (NP-C) is a rare progressive neurodegenerative lipid storage disorder with heterogeneous clinical presentation and challenging diagnostic procedures. Recently oxysterols have been reported to be specific biomarkers for NP-C but knowledge on the intra-individual variation and on reference intervals in children and adolescents are lacking. METHODS: We established a LC-MS/MS assay to measure Cholestane-3β, 5α, 6β-triol (C-triol) and 7-Ketocholesterol (7-KC) following Steglich esterification. To assess reference intervals and intra-individual variation we determined oxysterols in 148 children and adolescents from 0 to 18 years and repeat measurements in 19 of them. RESULTS: The reported method is linear (r>0.99), sensitive (detection limit of 0.03 ng/mL [0.07 nM] for C-triol, and 0.54 ng/mL [1.35 nM] for 7-KC) and precise, with an intra-day imprecision of 4.8% and 4.1%, and an inter-day imprecision of 7.0% and 11.0% for C-triol (28 ng/ml, 67 nM) and 7-KC (32 ng/ml, 80 nM), respectively. Recoveries for 7-KC and C-triol range between 93% and 107%. The upper reference limit obtained for C-triol is 40.4 ng/mL (95% CI: 26.4-61.7 ng/mL, 96.0 nM, 95% CI: 62.8-146.7 nM) and 75.0 ng/mL for 7-KC (95% CI: 55.5-102.5 ng/mL, 187.2 nM, 95% CI: 138.53-255.8 nM), with no age or gender dependency. Both oxysterols have a broad intra-individual variation of 46%±23% for C-triol and 52%±29% for 7-KC. Nevertheless, all Niemann-Pick patients showed increased C-triol levels including Niemann-Pick type A and B patients. CONCLUSIONS: The LC-MS/MS assay is a robust assay to quantify C-triol and 7-KC in plasma with well documented reference intervals in children and adolescents to screen for NP-C in the pediatric population. In addition our results suggest that especially the C-triol is a biomarker for all three Niemann-Pick diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxysterols are 27-carbon atom molecules resulting from autoxidation or enzymatic oxidation of cholesterol. They are present in numerous foodstuffs and have been demonstrated to be present at increased levels in the plasma of patients with cardiovascular diseases and in atherosclerotic lesions. Thus, their role in lipid disorders is widely suspected, and they might also be involved in important degenerative diseases such as Alzheimer's disease, osteoporosis, and age-related macular degeneration. Since atherosclerosis is associated with the presence of apoptotic cells and with oxidative and inflammatory processes, the ability of some oxysterols, especially 7-ketocholesterol and 7β-hydroxycholesterol, to trigger cell death, activate inflammation, and modulate lipid homeostasis is being extensively studied, especially in vitro. Thus, since there are a number of essential considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols, it is important to determine their biological activities and identify their signaling pathways, when they are used either alone or as mixtures. Oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever. Moreover, a substantial accumulation of polar lipids in cytoplasmic multilamellar structures has been observed with cytotoxic oxysterols, suggesting that cytotoxic oxysterols are potent inducers of phospholipidosis. This basic knowledge about oxysterols contributes to a better understanding of the associated pathologies and may lead to new treatments and new drugs. Since oxysterols have a number of biological activities, and as oxysterol-induced cell death is assumed to take part in degenerative pathologies, the present review will focus on the cytotoxic activities of these compounds, the corresponding cell death signaling pathways, and associated events (oxidation, inflammation, and phospholipidosis).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Niemann-Pick type C (NP-C) is a rare progressive neurodegenerative lipid storage disorder with heterogeneous clinical presentation and challenging diagnostic procedures. Recently oxysterols have been reported to be specific biomarkers for NP-C but knowledge on the intra-individual variation and on reference intervals in children and adolescents are lacking. METHODS We established a LC-MS/MS assay to measure Cholestane-3β, 5α, 6β-triol (C-triol) and 7-Ketocholesterol (7-KC) following Steglich esterification. To assess reference intervals and intra-individual variation we determined oxysterols in 148 children and adolescents from 0 to 18 years and repeat measurements in 19 of them. RESULTS The reported method is linear (r>0.99), sensitive (detection limit of 0.03 ng/mL [0.07 nM] for C-triol, and 0.54 ng/mL [1.35 nM] for 7-KC) and precise, with an intra-day imprecision of 4.8% and 4.1%, and an inter-day imprecision of 7.0% and 11.0% for C-triol (28 ng/ml, 67 nM) and 7-KC (32 ng/ml, 80 nM), respectively. Recoveries for 7-KC and C-triol range between 93% and 107%. The upper reference limit obtained for C-triol is 40.4 ng/mL (95% CI: 26.4-61.7 ng/mL, 96.0 nM, 95% CI: 62.8-146.7 nM) and 75.0 ng/mL for 7-KC (95% CI: 55.5-102.5 ng/mL, 187.2 nM, 95% CI: 138.53-255.8 nM), with no age or gender dependency. Both oxysterols have a broad intra-individual variation of 46%±23% for C-triol and 52%±29% for 7-KC. Nevertheless, all Niemann-Pick patients showed increased C-triol levels including Niemann-Pick type A and B patients. CONCLUSIONS The LC-MS/MS assay is a robust assay to quantify C-triol and 7-KC in plasma with well documented reference intervals in children and adolescents to screen for NP-C in the pediatric population. In addition our results suggest that especially the C-triol is a biomarker for all three Niemann-Pick diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steroidogenic factor 1 (SF-1), an orphan member of the intracellular receptor superfamily, plays an essential role in the development and function of multiple endocrine organs. It is expressed in all steroidogenic tissues where it regulates the P450 steroidogenic genes to generate physiologically active steroids. Although many of the functions of SF-1 in vivo have been defined, an unresolved question is whether a ligand modulates its transcriptional activity. Here, we show that 25-, 26-, or 27-hydroxycholesterol, known suppressors of cholesterol biosynthesis, enhance SF-1-dependent transcriptional activity. This activation is dependent upon the SF-1 activation function domain, and, is specific for SF-1 as several other receptors do not respond to these molecules. The oxysterols activate at concentrations comparable to those previously shown to inhibit cholesterol biosynthesis, and, can be derived from cholesterol by P450c27, an enzyme expressed within steroidogenic tissues. Recent studies have shown that the nuclear receptor LXR also is activated by oxysterols. We demonstrate that different oxysterols differ in their rank order potency for these two receptors, with 25-hydroxycholesterol preferentially activating SF-1 and 22(R)-hydroxycholesterol preferentially activating LXR. These results suggest that specific oxysterols may mediate transcriptional activation via different intracellular receptors. Finally, ligand-dependent transactivation of SF-1 by oxysterols may play an important role in enhancing steroidogenesis in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxysterols (OS), the polyoxygenated sterols, represent a class of potent regulatory molecules for important biological actions. Cytotoxicity of OS is one of the most important aspects in studies of OS bioactivities. However, studies, the structure-activity relationship (SAR) study in particular, have been hampered by the limited availability of structurally diverse OS in numbers and amounts. The aim of this project was to develop robust synthetic methods for the preparation of polyhydroxyl sterols, thereof, evaluate their cytotoxicity and establish structure-activity relationship. First, we found hydrophobicity of the side chain is essential for 7-HC's cytotoxicity, and a limited number of hydroxyl groups and a desired configuration on the A, B ring are required for a potent cytotoxicity of an OS, after syntheses and tests of a number of 7-HC's analogues against cancer cell lines. Then polyoxygenation of cholesterol A, B rings was explored. A preparative method for the synthesis of four diastereomerically pure cholest-4-en-3,6-diols was developed. Epoxidation on these cholest-4-en-3,6-diols showed that an allyl group exerts an auxiliary role in producing products with desired configuration in syntheses of the eight diastereomerically pure 45-epoxycholestane-3,6-diols. Reduction of the eight 45-epoxycholestane-3,6-diols produced all eight isomers of the cytotoxic 5α-acholestane 3β,5,6β-triol (CT) for the first time. Epoxide ring opening with protic or Lewis acids on the eight 45-epoxycholestane-3,6-diols are carefully studied. The results demonstrated a combination of an acid and a solvent affected the outcomes of a reaction dramatically. Acyl group participation and migration play an important role with numbers of substrates under certain conditions. All the eight 4,5-trans cholestane- 3,4,5,6-tetrols were synthesised through manipulation of acyl participation. Furthermore these reaction conditions were tested when a number of cholestane-3,4, 5,6,7-pentols and other C3-C7 oxygenated sterols were synthesised for the first time. Introduction of an oxygenated functional group through cholest-2-ene derivatives was studied. The elimination of 3-(4-toluenesulfonate) esters showed the interaction between the existing hydroxyls or acyls with the reaction centre often resulted in different products. The allyl oxidation, epoxidation and Epoxide ring opening reactions are investigated with these cholest-2-enes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yerba mate extract (Ilex paraguariensis) is a Source of phenolic compounds that possesses in vitro antioxidant activities and may contribute to a reduction in the risk of cardiovascular disease. In this Study we examined the acute effects of the consumption of mate infusion on ex vivo plasma and low-density lipoprotein (LDL) oxidation, plasma antioxidant capacity, and platelet aggregation. Twelve healthy fasted subjects ingested 500 mL. of mate infusion and blood samples were collected before and I h after mate intake. Lipid peroxidation of plasma and LDL was monitored by the measurement of cholesteryl-ester hydroperoxides (CE-OOH) and cholesterol oxides. The plasma antioxidant capacity was measured as ferric-reducing antioxidant potential (FRAP). Platelet aggregation was evaluated in platelet-rich plasma Stimulated with adenosine diphosphate and coagulation was tested in platelet-poor plasma. Ingestion of mate infusion diminished the ex vivo oxidizability of both plasma and LDL particles. After mate intake, the CE-OOH levels were around 50% lower in plasma oxidized with copper or 2,2`-azobis[-2-amidine-propane-hydrochloride] (AAPH) and the lag time to plasma oxidation increased 2-fold (P < 0.05). Copper- and AAPH-induced LDL peroxidation were also inhibited by around 50% and 20%, respectively, after mate Consumption (P < 0.05). The levels of various oxysterols were significantly reduced in oxidized-plasma and LDL (P < 0.05) and FRAP increased by 7.7% after mate intake (P < 0.01). However. mate consumption did not inhibit platelet aggregation or blood coagulation. In summary, intake of yerba mate infusion improved the antioxidant capacity and the resistance of plasma and LDL particles to ex vivo lipid peroxidation. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid emulsions that mimic natural lipoproteins help to understand the metabolism and the constitutional organization of circulating lipids. Chylomicrons synthesised by enterocyte cells usually contain oxysterols such as 7-ketocholesterol (7-KC). Here we describe the development of a 7-KC-containing emulsion as a model for oxisterol-rich chylomicron. Different amounts of 7-KC were used. Emulsion characteristics as effective diameter, lipid saturation with radiolabeled lipids was evaluated. In conclusion, the production of a synthetic 7-KC-rich emulsion resembling hylomicrons was feasible, being a model for in vivo metabolism studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

7-ketocholesterol (7-KC) differs from cholesterol by a functional ketone group at C7. It is an oxygenated cholesterol derivative (oxysterol), commonly present in oxidized low-density lipoprotein (LDL). Oxysterols are generated and participate in several physiologic and pathophysiologic processes. For instance, the cytotoxic effects of oxidized LDL have been widely attributed to bioactive compounds like oxysterols. The toxicity is in part due to 7-KC. Here we aimed to demonstrate the possibility of incorporating 7-KC into the synthetic nanoemulsion LDE, which resembles LDL in composition and behavior. This would provide a suitable artificial particle resembling LDL to study 7-KC metabolism. We were able to incorporate 7-KC in several amounts into LDE. The incorporation was evaluated and confirmed by several methods, including gel filtration chromatography, using radiolabeled lipids. The incorporation did not change the main lipid composition characteristics of the new nanoparticle. Particle sizes were also evaluated and did not differ from LDE. In vivo studies were performed by injecting the nanoemulsion into mice. The plasma kinetics and the targeted organs were the same as described for LDE. Therefore, 7-KC-LDE maintains composition, size and some functional characteristics of LDE and could be used in experiments dealing with 7-ketocholesterol metabolism in lipoproteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

24S- and 27-hydroxycholesterol are obligatory intermediates of cholesterol catabolism and play an important role in the maintenance of whole-body cholesterol homeostasis. Using an HPLC-MS method for oxysterol quantification, the distribution of esterified and unesterified oxysterols in lipoprotein subfractions as well as the influence of daytime, food intake and menstrual cycle on oxysterol concentrations were investigated in healthy volunteers. Moreover, reference intervals for 24S- and 27-hydroxycholesterol in plasma as well as the corresponding levels for 27-hydroxycholesterol in the HDL subfraction were established in 100 healthy volunteers. Both circulating oxysterols are mainly transported in association with HDL and LDL--primarily in the esterified form. No significant diurnal changes and no variations during menstrual cycle of either absolute or cholesterol-related plasma levels were detected. In contrast to 24S-hydroxycholesterol in plasma and 27-hydroxycholesterol in the HDL subfraction, the 95% reference intervals of 27-hydroxycholesterol both in plasma and the non-HDL subfraction were higher in males than in females. The concentrations of 27-hydroxycholesterol in plasma and the non-HDL subfraction showed strong positive correlations with the concentrations of cholesterol, non-HDL cholesterol and triglycerides. Our data on the lipoprotein distribution of oxysterols as well as on their intra- and inter-individual variation set the stage for future clinical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various studies suggest that oxidative modifications of low density lipoprotein (LDL), and also other lipoproteins, have an important role in the development of atherosclerosis. In addition to the oxidation products formed endogenously, oxidised triacylglycerols (TAG) and oxysterols in the diet contribute to the oxidised lipoproteins found in circulation. However, studies on both the effect of oxidised dietary lipids on lipoprotein lipid oxidation and the reactions that modify oxidised fat after ingestion have been scarce. Studies on the effects of dietary antioxidants on the lipid oxidation in vivo and the risk of atherosclerosis have been inconclusive. More clinical trials are needed to test the importance of lipoprotein oxidation as a cardiovascular risk factor in humans. In the recent years, various methods have been optimised and applied to the analysis of lipid oxidation products in vivo, and information on the molecular structures of oxidised lipids in plasma, lipoproteins and atherosclerotic plaques has started to accumulate. However, specific structures of oxidised TAG molecules present in these tissues and lipoprotein fractions have not been investigated earlier. In the orginal research in this thesis, an approach based on highperformance liquid chromatographyelectrospray ionisationmass spectrometry (HPLCESIMS) and baseline diene conjugation (BDC) methods was used in order to investigate lipid oxidation level and oxidised TAG molecular structures in pig and human lipoproteins after dietary interventions. The approach was optimised with human LDL samples, which contained various oxidation products of TAG. LDL particles of hyperlipidaemic subjects contained an elevated amount of conjugated dienes. In the pig studies, several oxidised TAG structures with hydroxy, keto, epoxy or aldehydic groups were found in chylomicrons and VLDL after diets rich in sunflower seed oil. Also, the results showed that oxidised sunflower seed oil increased the oxidation of lipoprotein lipids and their TAG molecules. TAG hydroperoxides could be detected neither in the small intestinal mucosa of the pigs fed on the oxidised oil nor in their chylomicrons or VLDL.6 In the clinical studies, dietary flavonol aglycones extracted from sea buckthorn berries did not have an effect on lipoprotein lipid oxidation and other potential risk factors of atherosclerosis, but their absorption was demonstrated. Oil supplementation seemed to increase the bioavailability of the flavonols. Oxidised TAG molecules were detected in LDL particles of the subjects after both flavonol and control diets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidised low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidised LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidised intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalised rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidised inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LDL oxidation may be important in atherosclerosis. Extensive oxidation of LDL by copper induces increased uptake by macrophages, but results in decomposition of hydroperoxides, making it more difficult to investigate the effects of hydroperoxides in oxidised LDL on cell function. We describe here a simple method of oxidising LDL by dialysis against copper ions at 4 degrees C, which inhibits the decomposition of hydroperoxides, and allows the production of LDL rich in hydroperoxides (626 +/- 98 nmol/mg LDL protein) but low in oxysterols (3 +/- 1 nmol 7-ketocholesterol/mg LDL protein), whilst allowing sufficient modification (2.6 +/- 0.5 relative electrophoretic mobility) for rapid uptake by macrophages (5.49 +/- 0.75 mu g I-125-labelled hydroperoxide-rich LDL vs. 0.46 +/- 0.04 mu g protein/mg cell protein in 18 h for native LDL). By dialysing under the same conditions, but at 37 degrees C, the hydroperoxides are decomposed extensively and the LDL becomes rich in oxysterols. This novel method of oxidising LDL with high yield to either a hydroperoxide- or oxysterol-rich form by simply altering the temperature of dialysis may provide a useful tool for determining the effects of these different oxidation products on cell function. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidized low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidized LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidized intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalized rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidized inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.