5 resultados para Oxyallyl
Resumo:
Small S-T splitting : The photoelectron spectrum of the oxyallyl radical anion (see picture) reveals that the electronic ground state of oxyallyl is singlet, and the lowest triplet state is separated from the singlet state by only (55 ± 2) meV in adiabatic energy.
Resumo:
Five different anionic [C3′H4′O]•- isomers, i.e. the radical anions of acrolein, acetyl carbene, formyl methyl carbene, methoxy vinylidene, and oxyallyl are generated in an ion beam mass spectrometer and subjected to neutralization-reionization (NR) mass spectrometric experiments including neutral and ion decomposition difference (NIDD) mass spectrometry; the latter allows for the examination of the neutrals' unimolecular reactivity. Further, the anionic, the singlet and triplet neutral, and the cationic [C3′H4′O] •-/0/•+ potentialenergy surfaces are calculated at the B3LYP/6-311++G(d,p) level of theory. For some species, notably the singlet state of oxyallyl, the theoretical treatment is complemented by G2, CASSCF, and MR-CI calculations. Theory and experiment are in good agreement in that at the neutral stage (i) acrolein does not react within the μsec timescale, (ii) acetyl and formyl methyl carbenes isomerize to methyl ketene, (iii) methoxy vinylidene rearranges to methoxy acetylene, (iv) singlet 1A1 oxyallyl undergoes ring closure to cyclopropanone, and (v) triplet 3B2 oxyallyl may have a lifetime sufficient to survive a NR experiment.
Resumo:
The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O center dot-) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states (B-3(2) and B-3(1)) of OXA and the ground doublet state ((2)A(2)) of the radical anion using density, functional theory (DFT). Spectral simulations have been carried out for the triplet statics based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the B-3(2) state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the B-3(2) feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the B-3(2) state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ((1)A(1)) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the (1)A(1) state and its vibrational progression of the CO stretching mode. The A, state is the lowest electronic state of,OXA, and the electron affinity (EA) of OXA is 1.940 +/- 0.010 eV. The B-3(2) state is the first excited state with an electronic term energy of 55 +/- 2 meV. The widths of the vibronic peaks of the (X) over tilde (1)A(1) state are much broader than those of the (a) over tilde B-3(2) state, implying that the (1)A(1) state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the (1)A(1) state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cydopropanone. The simulation of (b) over tilde B-3(1) OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the B-3(1) state is 0.883 +/- 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O center dot- reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the (X) over tilde (3)A '' state of AC. The ground ((2)A '') and first excited ((2)A') states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed.
Resumo:
Das Dissertationsprojekt befasst sich mit dem synthetischen Potential acyclischer Diaminocarbene (aDACs; Verbindungen des Typs (R2N)2C:) und prüft dabei insbesondere deren Reaktivität gegenüber Kohlenmonoxid (CO). Grundlage des Vorhabens ist eine Aufsehen erregende Beobachtung von SIEMELING et al. (Chem. Sci., 2010, 1, 697): Der Prototyp der aDACs, das Bis(diisopropylamino)carben, ist in der Lage CO zu aktivieren. Dabei wird zunächst ein intermediäres Keten des Typs (R2N)2C=C=O generiert, das in Folge einer intramolekularen Reaktion ein stabiles β-Lactamderivat ausbildet. Eine Sensation, schließlich ging man in der Fachwelt bis dato davon aus, dass cyclische und acyclische Diaminocarbene für derartige Reaktionen nicht elektrophil genug seien. Ziel der vorliegenden Arbeit war eine systematische Auslotung der aDAC-Reaktivität gegenüber CO. Im Rahmen der durchgeführten Untersuchungen ist es gelungen, das Feld der literaturbekannten aDACs von 12 auf 19 zu erweitern. Die Carbene, ihre Formamidiniumsalz-Vorstufen, sowie die korrespondierenden Carben–Metallkomplexe konnten in den meisten Fällen vollständig charakterisiert werden. Es konnte gezeigt werden, dass manche Isopropyl-substituierten aDACs in inertem Lösemittel einer β-Umlagerung unterliegen sowie, dass eine solche intramolekulare Reaktivität innerhalb dieser Substanzklasse nicht trivial ist: Zum Teil ganz ähnlich substituierte aDACs sind in Lösung unbegrenzt haltbar. Die Reaktivität gegenüber CO konnte an etwa einem Dutzend aDACs studiert werden. Lediglich in einem Fall zeigte sich das Carben inert. In einem sterisch überfrachteten Fall entstand in einer regio- und stereoselektiven Folgereaktion ein biologisch aktives bicyclisches β-Lactamderivat. In den meisten Fällen ergaben sich betainische Oxyallylspezies des Typs [(R2N)2C]2CO als intermolekulare Folgeprodukte. Die mechanistische Scheidelinie zwischen intra- und intermolekularer Keten-Folgereaktion konnte anhand der Carbonylierung sterisch ganz ähnlich substituierter aDACs aufgezeigt werden. Die gewonnenen Erkenntnisse liefern deutliche Hinweise darauf, dass das chemische Verhalten der aDACs gegenüber CO eher durch feinste elektronische Unterschiede als durch den sterischen Anspruch der Carben-Substituenten beeinflusst wird. Mit Hilfe von In-Situ-IR-Spektroskopie gelang es in manchen Fällen, bei denen eine Isolierung der Carbonylierungsprodukte nicht glückte, die Generierung hochreaktiver Oxyallylspezies zu belegen. Weiterhin konnte im Zuge der In-Situ-IR-Studien das zuvor nur postulierte Diaminoketen als primäres Carbonylierungsprodukt dingfest gemacht werden (ν(C=C=O) = 2085 1/cm): Es handelt sich hierbei um den ersten experimentellen Nachweis eines Diaminoketens überhaupt.
Resumo:
The iron oxyallyl carbocation generated from 2,7-dibromocycloheptanone was induced to undergo [4 + 3] cycloaddition reactions with various furans, affording a series of 12-oxatricyclo-[4.4.1.1(2,5)]-dodec-3-en-11-one adducts. Similar methodology was used to prepare two additional cycloadducts using menthofuran and two homologous aliphatic dibromoketones. Dipolar cycloaddition of ozone to the adducts afforded the corresponding secondary ozonides (i.e., 1,2,4-trioxolanes) in variable yields. Ozonides were investigated by quantum mechanics at the B3LYP/6-31+G* level to study structural features including close contacts which may be responsible for enhancing ozonide stability. The effect of these ozonides and their corresponding precursor cycloadducts upon radicle growth of both Sorghum bicolor and Cucumis sativus was evaluated at 5.0 x 10(-4) mol L-1. The most active cycloadducts and ozonides were also evaluated against the weed species Ipomoea grandifolia and Brachiaria decumbens, and the results are discussed. Compared to ozonides previously synthesized in our laboratory, the new ozonides described herein present improved plant growth regulatory activity.