915 resultados para Osmotic and ionic regulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na(+), K(+))-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 parts per thousand or 33 parts per thousand salinity. C ornatus is isosmotic after acclimation to 21 parts per thousand but is hyposmotic at 33 parts per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 parts per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH(4)(+) modulates enzyme affinity for K(+), which increases 187-fold in crabs acclimated to 33%. salinity. The (Na(+), K(+))-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 parts per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 parts per thousand), with little change in K(M) values (approximate to 50 mu mol L(-1)). K(+) together with NH(4)(+) synergistically stimulated activity to maximum rates of approximate to 240 nmol Pi min(-1) mg(-1). K, values for ouabain inhibition (approximate to 110 mu mol L(-1)) decreased to 44.9 +/- 1.0 mu mol L(-1) (21 parts per thousand) and 28.8 +/- 1.3 mu mol L(-1) (33 parts per thousand) in the presence of both K(+) and NH(4)(+). Assays employing various inhibitors suggest the presence of mitochondrial F(0)F(1)- and K(+)- and V-ATPase activities in the gill microsomes. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphipods living at the underside of Arctic sea ice are exposed to varying salinities due to freezing and melting, and have to cope with the resulting osmotic stress. Extracellular osmotic and ionic regulation at different salinities, thermal hysteresis, and supercooling points (SCPs) were studied in the under-ice amphipod Apherusa glacialis. The species is euryhaline, capable to regulate hyperosmotically at salinities S(R) < 30 g/kg, and osmoconforms at salinities S(R) >= 30 g/kg. Hyperosmotic regulation is an adaptation to thrive in low-salinity meltwater below the ice. Conforming to the ambient salinity during freezing reduces the risk of internal ice formation. Thermal hysteresis was not observed in the haemolymph of A. glacialis. The SCP of the species was -7.8 ± 1.9°C. Several ions were specifically downregulated ([Mg2+], [SO4]2-), or upregulated ([K+], [Ca2+]) in comparison to the medium. Strong downregulation of [Mg2+], is probably necessary to avoid an anaesthetic effect at low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl(-)] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl-] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions of photoperiod and temperature upon waterelectrolyte balance were examined in rainbow trout acclimated to six combinations of two photoperiods {18h light: 6h dark, o 6h light: l8h dark) and three temperatures (2, 10 and 18 C). The influence of temperature and photoperiod upon plasma, skeletal muscle, cardiac muscle and liver levels of sodium, potassium, magnesi.um, calcium, chloride, water content, water distribution and cellular ion concentrations was determined by a one way analysis of variance. Significant (p < 0.05 or better) temperature effects at common photoperiods were observed in 70% of the analyses performed, showing no bias toward either photoperiod. Significant photoperiod effects occured in 57% of the analyses performed at common temperatures. The influence of photoperiod was most prevalent at reduced temperatures. Potassium and magnesium appeared to be particularly thermosensitive, while sodium and calcium were the most photosensitive of the electrolytes. The ionic composition of all tissues studied were relatively thermosensitive, with liver apparently being the most sensitive. On the other hand; the ionic composition of skeletal and cardiac muscle appear to be the mos.t photosensitive of the tissues examined. Water content and distribution in skeletal muscle and liver were significantly influenced by temperature in 50% of the analyses performed showing a very strong bias toward UwinterU animals. Photoperiod effects were significant in 56% of the water parameters measured with a strong bias toward the two lower temperatures. Body weight was of significant influence in 16% of the 174 analyses performed. These data are discussed in terms of the effect of temperature upon ionregulatory mechanisms and the possible impact of photoperiod variations on endocrine systems influencing water-electrolyte metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a diurnal sine-wave temperature cycle (250 +- 5° C) on the wa terI-e etc r o1 yt est a t us 0 f gol df1' Sh , Carassius auratus, was assessed through determination of Na+, K+, Mg2+, Ca2+, Cl- and water content in plasma, Red blood cells and muscle tissue. Animals were also acclimated to o 0 0 static temperatures (20 C, 25 c, 30 C) corresponding to the high, low and mid-ooint temperatures of the cycle. All groups were sampled at 03:00, 09:00, 15:00 and 21:00 hr. Hemoglobin content and packed cell volume, as well as electrolyte and 'water levels were determined for each animal and red cell ion concentrations and ion : hemoglobin ratios estimated. Cycled animals were distinct from those at constant temperatures in several respects. Hematological parameters were elevated above those of animals at constant temperature and were, on a diurnal basis, more stable. Red blood cell electrolyte levels varied in an adaptively appropriate fashion to cycle temperatures. This was not the case in the constant temperature groups_ Under the cycling regime, plasma ion levels were more diurnally stable than those of constant temperature fish. Although muscle parameters in cycled fish exhibited more fluctuation than was observed in plasma, these also tended to be relatively more stable than was the caseErythrocytic data are discussed in terms of their effects on hemoglobin-oxygen affinity while plasma and muscle observations were considered from the standpoint of overall water-electrolyte balance. In general, cycled fish appeared to be capable of stabilizing overall body fluid composition, while simultaneously effecting adaptively-appropriate modifications in the erythrocytic ionic microenvironment of hemoglobin. The sometimes marked diurnal variability of water-electrolyte status in animals held at constant temperature as opposed to the conservation of cycled fish suggests that this species is, in some fashion, programmed for regulation in a thermally-fluctuating environment. If this interpretation is valid and a phenomenon of general occurrence, some earlier studies involving constant acclimation of eurythermal species normally occupying habitats which vary in temperature on a daily basis may require reconsideration. at constant temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrolysis of cell wall pectins by tomato (Lycopersicon esculentum) polygalacturonase (PG) in vitro is more extensive than the degradation affecting these polymers during ripening. We examined the hydrolysis of polygalacturonic acid and cell walls by PG isozyme 2 (PG2) under conditions widely adopted in the literature (pH 4.5 and containing Na+) and under conditions approximating the apoplastic environment of tomato fruit (pH 6.0 and K+ as the predominate cation). The pH optima for PG2 in the presence of K+ were 1.5 and 0.5 units higher for the hydrolysis of polygalacturonic acid and cell walls, respectively, compared with activity in the presence of Na+. Increasing K+ concentration stimulated pectin solubilization at pH 4.5 but had little influence at pH 6.0. Pectin depolymerization by PG2 was extensive at pH values from 4.0 to 5.0 and was further enhanced at high K+ levels. Oligomers were abundant products in in vitro reactions at pH 4.0 to 5.0, decreased sharply at pH 5.5, and were negligible at pH 6.0. EDTA stimulated PG-mediated pectin solubilization at pH 6.0 but did not promote oligomer production. Ca2+ suppressed PG-mediated pectin release at pH 4.5 yet had minimal influence on the proportional recovery of oligomers. Extensive pectin breakdown in processed tomato might be explained in part by cation- and low-pH-induced stimulation of PG and other wall-associated enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cleavage specificity of the Pvu II and BamHI restriction endonucleases is found to be dramatically reduced at elevated osmotic pressure. Relaxation in specificity of these otherwise highly accurate and specific enzymes, previously termed "star activity," is uniquely correlated with osmotic pressure between 0 and 100 atmospheres. No other colligative solvent property exhibits a uniform correlation with star activity for all of the compounds tested. Application of hydrostatic pressure counteracts the effects of osmotic pressure and restores the natural selectivity of the enzymes for their canonical recognition sequences. These results indicate that water solvation plays an important role in the site-specific recognition of DNA by many restriction enzymes. Osmotic pressure did not induce an analogous effect on the specificity of the EcoRV endonuclease, implying that selective hydration effects do not participate in DNA recognition in this system. Hydrostatic pressure was found to have little effect on the star activity induced by changes in ionic strength, pH, or divalent cation, suggesting that distinct mechanisms may exist for these observed alterations in specificity. Recent evidence has indicated that BamHI and EcoRI share similar structural motifs, while Pvu II and EcoRV belong to a different structural family. Evidently, the use of hydration water to assist in site-specific recognition is a motif neither limited to nor defined by structural families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The Borg Scale may be a useful tool for heart failure patients to self-monitor and self-regulate exercise on land or in water (hydrotherapy) by maintaining the heart rate (HR) between the anaerobic threshold and respiratory compensation point. Methods and Results: Patients performed a cardiopulmonary exercise test to determine their anaerobic threshold/respiratory compensation points. The percentage of the mean HR during the exercise session in relation to the anaerobic threshold HR (%EHR-AT), in relation to the respiratory compensation point (%EHR-RCP), in relation to the peak HR by the exercise test (%EHR-Peak) and in relation to the maximum predicted HR (%EHR-Predicted) was calculated. Next, patients were randomized into the land or water exercise group. One blinded investigator instructed the patients in each group to exercise at a level between ""relatively easy and slightly tiring"". The mean HR throughout the 30-min exercise session was recorded. The %EHR-AT and %EHR-Predicted did not differ between the land and water exercisegroups, but they differed in the %EHR-RCP (95 +/- 7 to 86 +/- 7. P<0.001) and in the %EHR-Peak (85 +/- 8 to 78 +/- 9, P=0.007). Conclusions: Exercise guided by the Borg scale maintains the patient's HR between the anaerobic threshold and respiratory compensation point (ie, in the exercise training zone). (Circ J 2009; 73: 1871-1876)