926 resultados para Os--Calcification
Resumo:
Smooth muscle cultures can calcify under certain circumstances. As a model system these cultures therefore provide information on why calcification occurs in atherosclerotic plaques. Whether all smooth muscle cells (under certain conditions), or only specific populations, can produce this mineralization has not been resolved. Demer's group has cloned calcifying vascular cells from subcultured bovine aorta and studied them in detail. They have speculated on whether the cells are smooth muscle which have altered in phenotype, or whether they are derived from a stem cell population within the artery wall. The article argues that while the normal process of smooth muscle phenotypic modulation seen in arterial repair could account for the observations, this view may be two simplistic considering the complex nature of the artery wall. Certainly there is evidence for heterogeneity of smooth muscle cells in the artery wall and recent evidence suggests that stem cells can circulate in the blood and repopulate tissues. Further studies are required to resolve the important question as to the origin of cells which produce mineralization in atheroma.
Resumo:
Vascular calcification is a strong prognostic marker of mortality in hemodialysis patients and has been associated with bone metabolism disorders in this population. In earlier stages of chronic kidney disease (CKD), vascular calcification also has been documented. This study evaluated the association between coronary artery calcification (CAC) and bone histomorphometric parameters in CKD predialysis patients assessed by multislice coronary tomography and by undecalcified bone biopsy. CAC was detected in 33 (66%) patients, and their median calcium score was 89.7 (0.4-2299.3 AU). The most frequent bone histologic alterations observed included low trabecular bone volume, increased eroded and osteoclast surfaces, and low bone-formation rate (BFR/BS). Multiple logistic regression analysis, adjusted for age, sex, and diabetes, showed that BFR/BS was independently associated with the presence of coronary calcification [p=.009; odd ratio (OR) = 0.15; 95% confidence interval (Cl) 0.036-0.619] This study showed a high prevalence of CAC in asymptomatic predialysis CKD patients. Also, there was an independent association of low bone formation and CAC in this population. In conclusion, our results provide evidence that low bone-formation rate constitutes another nontraditional risk factor for cardiovascular disease in CKD patients. 2010 American Society for Bone and Mineral Research.
Resumo:
Background: The presence of coronary artery calcium (CAC) is an independent marker of increased risk of cardiovascular disease (CVD) events and mortality. However, the predictive value of thoracic aorta calcification (TAC), which can be additionally identified without further scanning during assessment of CAC, is unknown. Methods: We followed a cohort of 8401 asymptomatic individuals (mean age: 53 +/- 10 years, 69% men) undergoing cardiac risk factor evaluation and TAC and CAC testing with electron beam computed tomography. Multivariable Cox proportional hazards models were developed to predict all-cause mortality based on the presence of TAC. Results: During a median follow-up period of 5 years, 124 (1.5%) deaths were observed. Overall survival was 96.9% and 98.9% for those with and without detectable TAC, respectively (p < 0.0001). Compared to those with no TAC, the hazard ratio for mortality in the presence of TAC was 3.25 (95% CI: 2.28-4.65, p < 0.0001) in unadjusted analysis. After adjusting for age, gender, hypertension, dyslipidemia, diabetes mellitus, smoking and family history of premature coronary artery disease, and presence of CAC the relationship remained robust (HR 1.61, 95% CI: 1.10-2.27, p = 0.015). Likelihood ratio chi(2) statistics demonstrated that the addition of TAC contributed significantly in predicting mortality to traditional risk factors alone (chi(2) = 13.62, p = 0.002) as well as risk factors + CAC (chi(2) = 5.84, p = 0.02) models. Conclusion: In conclusion, the presence of TAC was associated with all-cause mortality in our study; this relationship was independent of conventional CVD risk factors as well as the presence of CAC. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objectives This study was designed to evaluate whether the absence of coronary calcium could rule out >= 50% coronary stenosis or the need for revascularization. Background The latest American Heart Association guidelines suggest that a calcium score (CS) of zero might exclude the need for coronary angiography among symptomatic patients. Methods A substudy was made of the CORE64 (Coronary Evaluation Using Multi-Detector Spiral Computed Tomography Angiography Using 64 Detectors) multicenter trial comparing the diagnostic performance of 64-detector computed tomography to conventional angiography. Patients clinically referred for conventional angiography were asked to undergo a CS scan up to 30 days before. Results In all, 291 patients were included, of whom 214 (73%) were male, and the mean age was 59.3 +/- 10.0 years. A total of 14 (5%) patients had low, 218 (75%) had intermediate, and 59 (20%) had high pre-test probability of obstructive coronary artery disease. The overall prevalence of >= 50% stenosis was 56%. A total of 72 patients had CS = 0, among whom 14 (19%) had at least 1 >= 50% stenosis. The overall sensitivity for CS = 0 to predict the absence of >= 50% stenosis was 45%, specificity was 91%, negative predictive value was 68%, and positive predictive value was 81%. Additionally, revascularization was performed in 9 (12.5%) CS = 0 patients within 30 days of the CS. From a total of 383 vessels without any coronary calcification, 47 (12%) presented with >= 50% stenosis; and from a total of 64 totally occluded vessels, 13 (20%) had no calcium. Conclusions The absence of coronary calcification does not exclude obstructive stenosis or the need for revascularization among patients with high enough suspicion of coronary artery disease to be referred for coronary angiography, in contrast with the published recommendations. Total coronary occlusion frequently occurs in the absence of any detectable calcification. (Coronary Evaluation Using Multi-Detector Spiral Computed Tomography Angiography Using 64 Detectors [CORE-64]; NCT00738218) (J Am Coll Cardiol 2010;55:627-34) (C) 2010 by the American College of Cardiology Foundation
Resumo:
Background and objectives Low bone mineral density and coronary artery calcification (CAC) are highly prevalent among chronic kidney disease (CKD) patients, and both conditions are strongly associated with higher mortality. The study presented here aimed to investigate whether reduced vertebral bone density (VBD) was associated with the presence of CAC in the earlier stages of CKD. Design, setting, participants, & measurements Seventy-two nondialyzed CKD patients (age 52 +/- 11.7 years, 70% male, 42% diabetics, creatinine clearance 40.4 +/- 18.2 ml/min per 1.73 m(2)) were studied. VBD and CAC were quantified by computed tomography. Results CAC > 10 Agatston units (AU) was observed in 50% of the patients (median 120 AU [interquartile range 32 to 584 AU]), and a calcification score >= 400 AU was found in 19% (736 [527 to 1012] AU). VBD (190 +/- 52 Hounsfield units) correlated inversely with age (r = -0.41, P < 0.001) and calcium score (r = -0.31, P = 0.01), and no correlation was found with gender, creatinine clearance, proteinuria, lipid profile, mineral parameters, body mass index, and diabetes. Patients in the lowest tertile of VBD had expressively increased calcium score in comparison to the middle and highest tertile groups. In the multiple logistic regression analysis adjusting for confounding variables, low VBD was independently associated with the presence of CAC. Conclusions Low VBD was associated with CAC in nondialyzed CKD patients. The authors suggest that low VBD might constitute another nontraditional risk factor for cardiovascular disease in CKD. Clin J Am Soc Nephrol 6: 1456-1462, 2011. doi: 10.2215/CJN.10061110
Resumo:
Background: Vascular calcification is common and constitutes a prognostic marker of mortality in the hemodialysis population. Derangements of mineral metabolism may influence its development. The aim of this study is to prospectively evaluate the association between bone remodeling disorders and progression of coronary artery calcification (CAC) in hemodialysis patients. Study Design: Cohort study nested within a randomized controlled trial. Setting & Participants: 64 stable hemodialysis patients. Predictor: Bone-related laboratory parameters and bone histomorphometric characteristics at baseline and after 1 year of follow-up. Outcomes: Progression of CAC assessed by means of coronary multislice tomography at baseline and after 1 year of follow-up. Baseline calcification score of 30 Agatston units or greater was defined as calcification. Change in calcification score of 15% or greater was defined as progression. Results: Of 64 patients, 26 (40%) had CAC at baseline and 38 (60%) did not. Participants without CAC at baseline were younger (P < 0.001), mainly men (P = 0.03) and nonwhite (P = 0.003), and had lower serum osteoprotegerin levels (P = 0.003) and higher trabecular bone volume (P = 0.001). Age (P 0.003; beta coefficient = 1.107; 95% confidence interval [Cl], 1.036 to 1.183) and trabecular bone volume (P = 0.006; beta coefficient = 0.828; 95% Cl, 0.723 to 0.948) were predictors for CAC development. Of 38 participants who had calcification at baseline, 26 (68%) had CAC progression in 1 year. Progressors had lower bone-specific alkaline phosphatase (P = 0.03) and deoxypyridinoline levels (P = 0.02) on follow-up, and low turnover was mainly diagnosed at the 12-month bone biopsy (P = 0.04). Low-turnover bone status at the 12-month bone biopsy was the only independent predictor for CAC progression (P = 0.04; beta coefficient = 4.5; 95% Cl, 1.04 to 19.39). According to bone histological examination, nonprogressors with initially high turnover (n = 5) subsequently had decreased bone formation rate (P = 0.03), and those initially with low turnover (n = 7) subsequently had increased bone formation rate (P = 0.003) and osteoid volume (P = 0.001). Limitations: Relatively small population, absence of patients with severe hyperparathyroidism, short observational period. Conclusions: Lower trabecular bone volume was associated with CAC development, whereas improvement in bone turnover was associated with lower CAC progression in patients with high- and low-turnover bone disorders. Because CAC is implicated in cardiovascular mortality, bone derangements may constitute a modifiable mortality risk factor in hemodialysis patients.
Resumo:
We sought to evaluate this ""response-to-injury"" hypothesis of atherosclerosis by studying the interaction between systolic blood pressure (SBP) and LDL-cholesterol (LDL-C) in predicting the presence of coronary artery calcification (CAC) in asymptomatic men. We Studied 526 men (46 +/- 7 years of age) referred for electron-beam tomography (EBT) exam. The prevalence of CAC was determined across LDL-C tertiles (low: <115 mg/dl; middle: 115-139 mg/dl high: >= 140 mg/dl) within tertiles of SBP (low: <121 mmHg; middle: 121-130 mmHg; high: >= 131 mmHg). CAC was found in 220 (42%) men. There was no linear trend in the presence of CAC across LDL-C tertiles in the low (p = 0.6 for trend) and middle (p = 0.3 for trend) SBP tertile groups, respectively. In contrast, there was a significant trend for increasing CAC with increasing LDL-C (1st: 44%; 2nd: 49%; 3rd: 83%; p < 0.0001 for trend) in the high SBP tertile group. In multivariate logistic analyses (adjusting for age, smoking, triglyceride levels, HDL-cholesterol levels, body mass index, and fasting glucose levels), the odds ratio for any CAC associated with increasing LDL-C was significantly higher in those with highest SBP levels, whereas no such relationship was observed among men with SBP in the lower two tertiles. An interaction term (LDL-C x SBP) incorporated in the multivariate analyses was statistically significant (p = 0.038). The finding of an interaction between SBP and LDL-C relation to CAC in asymptomatic men support the response-to-injury model of atherogenesis. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and Aims: Calcium-containing phosphate binders have been shown to increase the progression of vascular calcification in hemodialysis patients. This is a prospective study that compares the effects of calcium acetate and sevelamer on coronary calcification (CAC) and bone histology. Methods: 101 hemodialysis patients were randomized for each phosphate binder and submitted to multislice coronary tomographies and bone biopsies at entry and 12 months. Results: The 71 patients who concluded the study had similar baseline characteristics. On follow-up, the sevelamer group had higher levels of intact parathyroid hormone (498 +/- 352 vs. 326 +/- 236 pg/ml, p = 0.017), bone alkaline phosphatase (38 +/- 24 vs. 28 +/- 15 U/l, p = 0.03) and deoxypyridinoline (135 +/- 107 vs. 89 +/- 71 nmol/l, p = 0.03) and lower LDL cholesterol (74 +/- 21 vs. 91 +/- 28 mg/dl, p = 0.015). Phosphorus (5.8 +/- 1.0 vs. 6 +/- 1.0 mg/dl, p = 0.47) and calcium (1.27 +/- 0.07 vs. 1.23 +/- 0.08 mmol/l, p = 0.68) levels did not differ between groups. CAC progression (35 vs. 24%, p = 0.94) and bone histological diagnosis at baseline and 12 months were similar in both groups. Patients of the sevelamer group with a high turnover at baseline had an increase in bone resorption (eroded surface, ES/BS = 9.0 +/- 5.9 vs. 13.1 +/- 9.5%, p = 0.05), whereas patients of both groups with low turnover at baseline had an improvement in bone formation rate (BFR/BS = 0.015 +/- 0.016 vs. 0.062 +/- 0.078, p = 0.003 for calcium and 0.017 +/- 0.016 vs. 0.071 +/- 0.084 mu m(3)/mu m(2)/day, p = 0.010 for sevelamer). Conclusions: There was no difference in CAC progression or changes in bone remodeling between the calcium and the sevelamer groups. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Purpose: To evaluate the influence of cross-sectional arc calcification on the diagnostic accuracy of computed tomography (CT) angiography compared with conventional coronary angiography for the detection of obstructive coronary artery disease (CAD). Materials and Methods: Institutional Review Board approval and written informed consent were obtained from all centers and participants for this HIPAA-compliant study. Overall, 4511 segments from 371 symptomatic patients (279 men, 92 women; median age, 61 years [interquartile range, 53-67 years]) with clinical suspicion of CAD from the CORE-64 multi-center study were included in the analysis. Two independent blinded observers evaluated the percentage of diameter stenosis and the circumferential extent of calcium (arc calcium). The accuracy of quantitative multidetector CT angiography to depict substantial (>50%) stenoses was assessed by using quantitative coronary angiography (QCA). Cross-sectional arc calcium was rated on a segment level as follows: noncalcified or mild (<90 degrees), moderate (90 degrees-180 degrees), or severe (>180 degrees) calcification. Univariable and multivariable logistic regression, receiver operation characteristic curve, and clustering methods were used for statistical analyses. Results: A total of 1099 segments had mild calcification, 503 had moderate calcification, 338 had severe calcification, and 2571 segments were noncalcified. Calcified segments were highly associated (P < .001) with disagreement between CTA and QCA in multivariable analysis after controlling for sex, age, heart rate, and image quality. The prevalence of CAD was 5.4% in noncalcified segments, 15.0% in mildly calcified segments, 27.0% in moderately calcified segments, and 43.0% in severely calcified segments. A significant difference was found in area under the receiver operating characteristic curves (noncalcified: 0.86, mildly calcified: 0.85, moderately calcified: 0.82, severely calcified: 0.81; P < .05). Conclusion: In a symptomatic patient population, segment-based coronary artery calcification significantly decreased agreement between multidetector CT angiography and QCA to detect a coronary stenosis of at least 50%.
Resumo:
Background: Vitamin D-resistant rickets type-IIA (VDRR-IIA) is a rare, congenital, metabolic disorder characterized by hypocalcemia, rickets, and alopecia. There are reports correlating calcium-metabolic disorders with basal ganglia calcification (BGC) and neuropsychiatric symptoms. Objective: The authors document and discuss the relationships of these phenomena. Method: The authors describe a patient born with VDRR-IIA who subsequently developed BGC at age 15, and catatonic symptoms of progressive severity at age 16. Results: There appeared to be a positive correlation between the severity of BGC and neuropsychiatric symptoms. Discussion: This is the first time VDRR-IIA, BGC, and catatonia have been reported in a patient, and the authors discuss the relationship among the conditions. (Psychosomatics 2009; 50: 420-424)
Resumo:
Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective - We hypothesized that reactive oxygen species ( ROS) contribute to progression of aortic valve ( AV) calcification/ stenosis. Methods and Results - We investigated ROS production and effects of antioxidants tempol and lipoic acid ( LA) in calcification progression in rabbits given 0.5% cholesterol diet +10(4) IU/d Vit.D-2 for 12 weeks. Superoxide and H2O2 microfluorotopography and 3-nitrotyrosine immunoreactivity showed increased signals not only in macrophages but preferentially around calcifying foci, in cells expressing osteoblast/ osteoclast, but not macrophage markers. Such cells also showed increased expression of NAD(P) H oxidase subunits Nox2, p22phox, and protein disulfide isomerase. Nox4, but not Nox1 mRNA, was increased. Tempol augmented whereas LA decreased H2O2 signals. Importantly, AV calcification, assessed by echocardiography and histomorphometry, decreased 43% to 70% with LA, but increased with tempol (P <= 0.05). Tempol further enhanced apoptosis and Nox4 expression. In human sclerotic or stenotic AV, we found analogous increases in ROS production and NAD(P) H oxidase expression around calcifying foci. An in vitro vascular smooth muscle cell (VSMC) calcification model also exhibited increased, catalase-inhibitable, calcium deposit with tempol, but not with LA. Conclusions - Our data provide evidence that ROS, particularly hydrogen peroxide, potentiate AV calcification progression. However, tempol exhibited a paradoxical effect, exacerbating AV/vascular calcification, likely because of its induced increase in peroxide generation.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
This is the report of a rare case of endomyocardial fibrosis associated with massive calcification of the left ventricle in a male patient with dyspnea on great exertion, which began 5 years earlier and rapidly evolved. Due to lack of information and the absence of clinical signs that could characterize impairment of other organs, the case was initially managed as a disease with a pulmonary origin. With the evolution of the disease and in the presence of radiological images of heterogeneous opacification in the projection of the left ventricle, the diagnostic hypothesis of endomyocardial disease was established. This hypothesis was later confirmed on chest computed tomography. The patient died on the 16th day of the hospital stay, probably because of lack of myocardial reserve, with clinical findings of refractory heart failure, possibly aggravated by pulmonary infection. This shows that a rare disease such as endomyocardial fibrosis associated with massive calcification of the left ventricle may be suspected on a simple chest X-ray and confirmed by computed tomography.
Resumo:
OBJECTIVE: To assess the relation between coronary artery disease and the calcification index on helical computed tomography. METHOD: We studied 22 patients (ages ranging from 40 to 70 years) who underwent coronary angiography because of chest pain suggestive of angina pectoris. Findings on coronary angiography were classified as follows: significant obstructive disease (stenosis > or = 50%), nonobstructive disease (stenosis <50%), and no disease. With no previous knowledge of the results of the coronary angiography and within 7 days, helical computed tomography of the chest was performed. Then, data of the coronary angiography were correlated with the calcification index obtained by helical computed tomography. RESULTS: The sensitivity of helical computed tomography to the presence of significant obstructive lesions on coronary angiography was 87.5%, specificity was 100%, and negative and positive predictive values were 75% and 100%, respectively. The mean calcification index was greater in patients with severe coronary lesions, mainly when involvement of 2 or 3 vessels occurred, than that in patients with no coronary artery disease or with nonobstructive coronary artery lesions (p<0.05). CONCLUSION: Helical computed tomography is an effective method for detecting and quantifying coronary artery calcification, and it has proved to be sensitive to and specific for the noninvasive diagnosis of coronary artery stenosis.