902 resultados para Orthographic projection
Resumo:
Mode of access: Internet.
Resumo:
This paper presents an image-based rendering system using algebraic relations between different views of an object. The system uses pictures of an object taken from known positions. Given three such images it can generate "virtual'' ones as the object would look from any position near the ones that the two input images were taken from. The extrapolation from the example images can be up to about 60 degrees of rotation. The system is based on the trilinear constraints that bind any three view so fan object. As a side result, we propose two new methods for camera calibration. We developed and used one of them. We implemented the system and tested it on real images of objects and faces. We also show experimentally that even when only two images taken from unknown positions are given, the system can be used to render the object from other view points as long as we have a good estimate of the internal parameters of the camera used and we are able to find good correspondence between the example images. In addition, we present the relation between these algebraic constraints and a factorization method for shape and motion estimation. As a result we propose a method for motion estimation in the special case of orthographic projection.
Resumo:
Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.
Resumo:
Many of the applications of geometric modelling are concerned with the computation of well-defined properties of the model. The applications which have received less attention are those which address questions to which there is no unique answer. This thesis describes such an application: the automatic production of a dimensioned engineering drawing. One distinctive feature of this operation is the requirement for sophisticated decision-making algorithms at each stage in the processing of the geometric model. Hence, the thesis is focussed upon the design, development and implementation of such algorithms. Various techniques for geometric modelling are briefly examined and then details are given of the modelling package that was developed for this project, The principles of orthographic projection and dimensioning are treated and some published work on the theory of dimensioning is examined. A new theoretical approach to dimensioning is presented and discussed. The existing body of knowledge on decision-making is sampled and the author then shows how methods which were originally developed for management decisions may be adapted to serve the purposes of this project. The remainder of the thesis is devoted to reports on the development of decision-making algorithms for orthographic view selection, sectioning and crosshatching, the preparation of orthographic views with essential hidden detail, and two approaches to the actual insertion of dimension lines and text. The thesis concludes that the theories of decision-making can be applied to work of this kind. It may be possible to generate computer solutions that are closer to the optimum than some man-made dimensioning schemes. Further work on important details is required before a commercially acceptable package could be produced.
Resumo:
Cover: Farrar's topography.
Resumo:
The development of an algorithm for the construction of auxiliary projection nets (conform, equivalent and orthographic), in the equatorial and polar versions, is presented. The algorithm for the drawing of the "IGAREA 220" counting net (ALYES & MENDES, 1972), is also presented. Those algorithms are the base of STEGRAPH program (vers. 2.0), for MS-DOS computers, which has other applications.
Resumo:
The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
This research re-investigated the claim that beginning readers exploit information from the orthographic rime of clue words to help them to decode unfamiliar words. In Experiment 1, first-grade children were equally able to use orthographic information from the beginning, middle, and end of clue words to identify unfamiliar target words. Moreover, the improvement in reading end- (or orthographic rime-) same target words following clue word presentation reflected phonological priming. In second-grade children, with correction for retesting effects, improvement following clue word presentation for end-same and beginning-same target words was equivalent, although end-same target words improved more than middle-same target words. In Experiment 2, both first- and second-grade children were able to use orthographic information from the beginning, middle, and end of clue words to identify unfamiliar words. Clue word presentation enhanced the reading of beginning-same and end-same target words more than middle-same target words. Improvement was the same for beginning-same and end-same target words. Target word improvement following clue word presentation was greater than that for phonologically primed words only in children reading target words sharing the beginning sequence of the clue word. (C) 1998 Academic Press.
Resumo:
Recent advances in the control of molecular engineering architectures have allowed unprecedented ability of molecular recognition in biosensing, with a promising impact for clinical diagnosis and environment control. The availability of large amounts of data from electrical, optical, or electrochemical measurements requires, however, sophisticated data treatment in order to optimize sensing performance. In this study, we show how an information visualization system based on projections, referred to as Projection Explorer (PEx), can be used to achieve high performance for biosensors made with nanostructured films containing immobilized antigens. As a proof of concept, various visualizations were obtained with impedance spectroscopy data from an array of sensors whose electrical response could be specific toward a given antibody (analyte) owing to molecular recognition processes. In addition to discussing the distinct methods for projection and normalization of the data, we demonstrate that an excellent distinction can be made between real samples tested positive for Chagas disease and Leishmaniasis, which could not be achieved with conventional statistical methods. Such high performance probably arose from the possibility of treating the data in the whole frequency range. Through a systematic analysis, it was inferred that Sammon`s mapping with standardization to normalize the data gives the best results, where distinction could be made of blood serum samples containing 10(-7) mg/mL of the antibody. The method inherent in PEx and the procedures for analyzing the impedance data are entirely generic and can be extended to optimize any type of sensor or biosensor.
Resumo:
In the picture-word interference task, naming responses are facilitated when a distractor word is orthographically and phonologically related to the depicted object as compared to an unrelated word. We used event-related functional magnetic resonance imaging (fMRI) to investigate the cerebral hemodynamic responses associated with this priming effect. Serial (or independent-stage) and interactive models of word production that explicitly account for picture-word interference effects assume that the locus of the effect is at the level of retrieving phonological codes, a role attributed recently to the left posterior superior temporal cortex (Wernicke's area). This assumption was tested by randomly presenting participants with trials from orthographically related and unrelated distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt naming responses occurred in the absence of scanner noise, allowing reaction time data to be recorded. Analysis of this data confirmed the priming effect. Analysis of the fMRI data revealed blood oxygen level-dependent signal decreases in Wernicke's area and the right anterior temporal cortex, whereas signal increases were observed in the anterior cingulate, the right orbitomedial prefrontal, somatosensory, and inferior parietal cortices, and the occipital lobe. The results are interpreted as supporting the locus for the facilitation effect as assumed by both classes of theoretical model of word production. In addition, our results raise the possibilities that, counterintuitively, picture-word interference might be increased by the presentation of orthographically related distractors, due to competition introduced by activation of phonologically related word forms, and that this competition requires inhibitory processes to be resolved. The priming effect is therefore viewed as being sufficient to offset the increased interference. We conclude that information from functional imaging studies might be useful for constraining theoretical models of word production. (C) 2002 Elsevier Science (USA).