1000 resultados para Ornstein-Uhlenbeck process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J60, 62M99.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phylogenetic comparative methods are increasingly used to give new insights into the dynamics of trait evolution in deep time. For continuous traits the core of these methods is a suite of models that attempt to capture evolutionary patterns by extending the Brownian constant variance model. However, the properties of these models are often poorly understood, which can lead to the misinterpretation of results. Here we focus on one of these models – the Ornstein Uhlenbeck (OU) model. We show that the OU model is frequently incorrectly favoured over simpler models when using Likelihood ratio tests, and that many studies fitting this model use datasets that are small and prone to this problem. We also show that very small amounts of error in datasets can have profound effects on the inferences derived from OU models. Our results suggest that simulating fitted models and comparing with empirical results is critical when fitting OU and other extensions of the Brownian model. We conclude by making recommendations for best practice in fitting OU models in phylogenetic comparative analyses, and for interpreting the parameters of the OU model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pair trading is an old and well-known technique among traders. In this paper, we discuss an important element not commonly debated in Brazil: the cointegration between pairs, which would guarantee the spread stability. We run the Dickey-Fuller test to check cointegration, and then compare the results with non-cointegrated pairs. We found that the Sharpe ratio of cointegrated pairs is greater than the non-cointegrated. We also use the Ornstein-Uhlenbeck equation in order to calculate the half-life of the pairs. Again, this improves their performance. Last, we use the leverage suggested by Kelly Formula, once again improving the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studiamo l'operatore di Ornstein-Uhlenbeck e il semigruppo di Ornstein-Uhlenbeck in un sottoinsieme aperto convesso $\Omega$ di uno spazio di Banach separabile $X$ dotato di una misura Gaussiana centrata non degnere $\gamma$. In particolare dimostriamo la disuguaglianza di Sobolev logaritmica e la disuguaglianza di Poincaré, e grazie a queste disuguaglianze deduciamo le proprietà spettrali dell'operatore di Ornstein-Uhlenbeck. Inoltre studiamo l'equazione ellittica $\lambdau+L^{\Omega}u=f$ in $\Omega$, dove $L^\Omega$ è l'operatore di Ornstein-Uhlenbeck. Dimostriamo che per $\lambda>0$ e $f\in L^2(\Omega,\gamma)$ la soluzione debole $u$ appartiene allo spazio di Sobolev $W^{2,2}(\Omega,\gamma)$. Inoltre dimostriamo che $u$ soddisfa la condizione di Neumann nel senso di tracce al bordo di $\Omega$. Questo viene fatto finita approssimazione dimensionale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we implement estimating procedures in order to estimate threshold parameters for the continuous time threshold models driven by stochastic di®erential equations. The ¯rst procedure is based on the EM (expectation-maximization) algorithm applied to the threshold model built from the Brownian motion with drift process. The second procedure mimics one of the fundamental ideas in the estimation of the thresholds in time series context, that is, conditional least squares estimation. We implement this procedure not only for the threshold model built from the Brownian motion with drift process but also for more generic models as the ones built from the geometric Brownian motion or the Ornstein-Uhlenbeck process. Both procedures are implemented for simu- lated data and the least squares estimation procedure is also implemented for real data of daily prices from a set of international funds. The ¯rst fund is the PF-European Sus- tainable Equities-R fund from the Pictet Funds company and the second is the Parvest Europe Dynamic Growth fund from the BNP Paribas company. The data for both funds are daily prices from the year 2004. The last fund to be considered is the Converging Europe Bond fund from the Schroder company and the data are daily prices from the year 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between body size and geographic range was analyzed for 70 species of terrestrial Carnivora ("fissipeds") of the New World, after the control of phylogenetic patterns in the data using phylogenetic eigenvector regression. The analysis from EcoSim software showed that the variables are related as a triangular envelope. Phylogenetic patterns in data were detected by means of phylogenetic correlograms, and 200 simulations of the phenotypic evolution were also performed over the phylogeny. For body size, the simulations suggested a non-linear relationship for the evolution of this character along the phylogeny. For geographic range size, the correlogram showed no phylogenetic patterns. A phylogenetic eigenvector regression was performed on original data and on data simulated under Ornstein-Uhlenbeck process. Since both characters did not evolve under a simple Brownian motion process, the Type I errors should be around 10%, compatible with other methods to analyze correlated evolution. The significant correlation of the original data (r = 0.38; P < 0.05), as well as the triangular envelope, then indicate ecological and adaptive processes connecting the two variables, such as those proposed in minimum viable population models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a two-factor (Vasicek-CIR) model of the term structure of interest rates and develops its pricing and empirical properties. We assume that default free discount bond prices are determined by the time to maturity and two factors, the long-term interest rate and the spread. Assuming a certain process for both factors, a general bond pricing equation is derived and a closed-form expression for bond prices is obtained. Empirical evidence of the model's performance in comparisson with a double Vasicek model is presented. The main conclusion is that the modeling of the volatility in the long-term rate process can help (in a large amount) to fit the observed data can improve - in a reasonable quantity - the prediction of the future movements in the medium- and long-term interest rates. However, for shorter maturities, it is shown that the pricing errors are, basically, negligible and it is not so clear which is the best model to be used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a two--factor model of the term structure ofinterest rates. We assume that default free discount bond prices aredetermined by the time to maturity and two factors, the long--term interestrate and the spread (difference between the long--term rate and theshort--term (instantaneous) riskless rate). Assuming that both factorsfollow a joint Ornstein--Uhlenbeck process, a general bond pricing equationis derived. We obtain a closed--form expression for bond prices andexamine its implications for the term structure of interest rates. We alsoderive a closed--form solution for interest rate derivatives prices. Thisexpression is applied to price European options on discount bonds andmore complex types of options. Finally, empirical evidence of the model'sperformance is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide a theoretical framework to explain the empirical finding that the estimated betas are sensitive to the sampling interval even when using continuously compounded returns. We suppose that stock prices have both permanent and transitory components. The permanent component is a standard geometric Brownian motion while the transitory component is a stationary Ornstein-Uhlenbeck process. The discrete time representation of the beta depends on the sampling interval and two components labelled \"permanent and transitory betas\". We show that if no transitory component is present in stock prices, then no sampling interval effect occurs. However, the presence of a transitory component implies that the beta is an increasing (decreasing) function of the sampling interval for more (less) risky assets. In our framework, assets are labelled risky if their \"permanent beta\" is greater than their \"transitory beta\" and vice versa for less risky assets. Simulations show that our theoretical results provide good approximations for the means and standard deviations of estimated betas in small samples. Our results can be perceived as indirect evidence for the presence of a transitory component in stock prices, as proposed by Fama and French (1988) and Poterba and Summers (1988).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit ist motiviert durch biologische Fragestellungen bezüglich des Verhaltens von Membranpotentialen in Neuronen. Ein vielfach betrachtetes Modell für spikende Neuronen ist das Folgende. Zwischen den Spikes verhält sich das Membranpotential wie ein Diffusionsprozess X der durch die SDGL dX_t= beta(X_t) dt+ sigma(X_t) dB_t gegeben ist, wobei (B_t) eine Standard-Brown'sche Bewegung bezeichnet. Spikes erklärt man wie folgt. Sobald das Potential X eine gewisse Exzitationsschwelle S überschreitet entsteht ein Spike. Danach wird das Potential wieder auf einen bestimmten Wert x_0 zurückgesetzt. In Anwendungen ist es manchmal möglich, einen Diffusionsprozess X zwischen den Spikes zu beobachten und die Koeffizienten der SDGL beta() und sigma() zu schätzen. Dennoch ist es nötig, die Schwellen x_0 und S zu bestimmen um das Modell festzulegen. Eine Möglichkeit, dieses Problem anzugehen, ist x_0 und S als Parameter eines statistischen Modells aufzufassen und diese zu schätzen. In der vorliegenden Arbeit werden vier verschiedene Fälle diskutiert, in denen wir jeweils annehmen, dass das Membranpotential X zwischen den Spikes eine Brown'sche Bewegung mit Drift, eine geometrische Brown'sche Bewegung, ein Ornstein-Uhlenbeck Prozess oder ein Cox-Ingersoll-Ross Prozess ist. Darüber hinaus beobachten wir die Zeiten zwischen aufeinander folgenden Spikes, die wir als iid Treffzeiten der Schwelle S von X gestartet in x_0 auffassen. Die ersten beiden Fälle ähneln sich sehr und man kann jeweils den Maximum-Likelihood-Schätzer explizit angeben. Darüber hinaus wird, unter Verwendung der LAN-Theorie, die Optimalität dieser Schätzer gezeigt. In den Fällen OU- und CIR-Prozess wählen wir eine Minimum-Distanz-Methode, die auf dem Vergleich von empirischer und wahrer Laplace-Transformation bezüglich einer Hilbertraumnorm beruht. Wir werden beweisen, dass alle Schätzer stark konsistent und asymptotisch normalverteilt sind. Im letzten Kapitel werden wir die Effizienz der Minimum-Distanz-Schätzer anhand simulierter Daten überprüfen. Ferner, werden Anwendungen auf reale Datensätze und deren Resultate ausführlich diskutiert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field of computational neuroscience develops mathematical models to describe neuronal systems. The aim is to better understand the nervous system. Historically, the integrate-and-fire model, developed by Lapique in 1907, was the first model describing a neuron. In 1952 Hodgkin and Huxley [8] described the so called Hodgkin-Huxley model in the article “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”. The Hodgkin-Huxley model is one of the most successful and widely-used biological neuron models. Based on experimental data from the squid giant axon, Hodgkin and Huxley developed their mathematical model as a four-dimensional system of first-order ordinary differential equations. One of these equations characterizes the membrane potential as a process in time, whereas the other three equations depict the opening and closing state of sodium and potassium ion channels. The membrane potential is proportional to the sum of ionic current flowing across the membrane and an externally applied current. For various types of external input the membrane potential behaves differently. This thesis considers the following three types of input: (i) Rinzel and Miller [15] calculated an interval of amplitudes for a constant applied current, where the membrane potential is repetitively spiking; (ii) Aihara, Matsumoto and Ikegaya [1] said that dependent on the amplitude and the frequency of a periodic applied current the membrane potential responds periodically; (iii) Izhikevich [12] stated that brief pulses of positive and negative current with different amplitudes and frequencies can lead to a periodic response of the membrane potential. In chapter 1 the Hodgkin-Huxley model is introduced according to Izhikevich [12]. Besides the definition of the model, several biological and physiological notes are made, and further concepts are described by examples. Moreover, the numerical methods to solve the equations of the Hodgkin-Huxley model are presented which were used for the computer simulations in chapter 2 and chapter 3. In chapter 2 the statements for the three different inputs (i), (ii) and (iii) will be verified, and periodic behavior for the inputs (ii) and (iii) will be investigated. In chapter 3 the inputs are embedded in an Ornstein-Uhlenbeck process to see the influence of noise on the results of chapter 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.